{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Tutorial: Analytic continuation of SrVO$_3$ self-energy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial covers, in a pedagogical way, a real-world use case of the `ana_cont` library. \n", "We will show how to read Matsubara data from a w2dynamics output hdf5 file and prepare the data for analytic continuation.\n", "Then, analytic continuation is performed by two different methods: MaxEnt and Pade.\n", "Finally, we can use the Kramers-Kronig relations to get the full complex self-energy, including real and imaginary part on the real-frequency axis. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, we need some standard imports: sys, os, numpy, h5py, matplotlib.pyplot. \n", "\n", "Then, we insert the path of the ana_cont repository into the python-path. This allows us to import ana_cont without having to install it. But note that, for using Pade later in the notebook, it is necessary that you have already compiled it (`python setup.py build_ext --inplace`)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys, os\n", "import numpy as np\n", "import h5py\n", "import matplotlib.pyplot as plt\n", "sys.path.insert(0, os.environ['HOME'] + '/Programs/ana_cont')\n", "import ana_cont.continuation as cont" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, download the DMFT file [from here](https://github.com/josefkaufmann/ana_cont/wiki/datafiles/dmft_svo.hdf5).\n", "\n", "Load DMFT data from w2dynamics output file. It contains a single-shot symmetric improved estimators calculation on top of a converged DMFT calculation of SrVO$_3$ with three degenerate orbitals. The system is paramagnetic.\n", "\n", "If you have not saved the DMFT file in the current working directory, you have to add the path to it in the file name in the first line of the following cell. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "f = h5py.File('dmft_svo.hdf5', 'r')\n", "beta = f['.config'].attrs['general.beta']\n", "siw_full = f['stat-001/ineq-001/siw-full/value'][()]\n", "siw_err_full = f['stat-001/ineq-001/siw-full/error'][()]\n", "smom = f['stat-001/ineq-001/smom/value'][()]\n", "siw = np.diagonal(np.diagonal(siw_full, axis1=0, axis2=2), axis1=0, axis2=1).transpose((1, 2, 0))\n", "err = np.diagonal(np.diagonal(siw_err_full, axis1=0, axis2=2), axis1=0, axis2=1).transpose((1, 2, 0))\n", "smom = np.mean(smom, axis=(0, 1)) # degenerate spins and orbitals -> average over 6 components\n", "siw = np.mean(siw, axis=(0, 1))\n", "err = np.mean(err, axis=(0, 1)) / np.sqrt(6.)\n", "niw_full = siw.shape[-1] // 2\n", "f.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now prepare the data for analytic contination, i.e. subtract the Hartree term and select a Matsubara frequency range. We then plot the data to make sure we reach the asymptotic region. We also (logarithmically) plot the QMC error, which does not increase at high frequencies, because we have used symmetric improved estimators." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhcVZ3/8fe3lt7XpDudTmcPWUgCIdCAsisEIYBhRFlcBlccxwVHR8XhN+Myo6LiNuM2uA1CFBVFdhACARUIJBCykITsnU7v3el9q+X8/ji3k07oTjpdy63c+309Tz1Vdet23W/uk/7k5NxzzxFjDEoppbwv4HYBSiml0kMDXymlfEIDXymlfEIDXymlfEIDXymlfCLkdgFHU1ZWZmbOnOl2GUopdcJYt25dizGmfKTPMjrwZ86cydq1a90uQymlThgisne0z7RLRymlfEIDXymlfEIDXymlfCIpgS8il4nINhHZISK3jPC5iMh/O59vEJHTk3FcpZRSY5dw4ItIEPgRcDmwELhBRBYesdvlwFzncRPwk0SPq5RS6vgko4V/FrDDGLPLGDMI3AOsOGKfFcCvjfUCUCIilUk4tlJKqTFKRuBXAfuGva91th3vPgCIyE0islZE1jY3NyehPKWUUpCccfgywrYj51weyz52ozF3AHcAVFdX69zNSqmU64/EiBtDdihI3Bj6IjGyQwH6BmOEggFCAaE/EmMgGicSixOLG6JxY59jhmg8fth7+7ndL+K8DwjkZgUZiMbpj8ToG4zRF4nRH7HvAcRJyoLsEB8+f3bS/5zJCPxaYNqw91OBunHso5TyAGMMA9E4Xf1Regai9EdjGAPGQNxZf8MYMBiMgWjcsLe1h86+iP0MiBv7PQChgCAiDEbjDMbiB0N3MGofQ6/7IjF6BmMMRGKEgkJAhFjcHPy5of2HXsfi9vsjsTid/VFXztVoygqyMzbwXwLmisgsYD9wPfDuI/Z5APiEiNwDnA10GGPqk3BspdQRIrE4vYMxBqIxBiI2CPsGbet0aNvB19E4A5EY3QNR2nsj9EViTMjPIho3tgU6GKP3YGs0Sq+zLRKzwdncNXAwOIfEDW/YlmzhoJAVDJAVChB2nnPDQfKyQ2QHAwxEbIs7FBCyQgEKckIH988KBcgKBggGBBEIilBemE0wEGAwGkcEcsNBBmNxcsPBg6333HCQ7FCQcFAIBYVgwLb8gwEZ9my/NxS024a/j8bs/xxywrbWnHCQ3HCQ3KwgWcHAwda9/ccwNRIOfGNMVEQ+ATwOBIFfGmM2i8g/OZ//FHgEWA7sAHqBDyR6XKVOdPa/+zY4ozH7uj8So7FzgPqOPtp6Bg+Gda/z6Bt0QnfY9r5IjN7B6MFW63hbq3lZQbJDAdr7IoQDAXLCAfKyQuRmHQqmguwQZQXZZAUDhIJCeUE2WaHDLwWKQH52iMLsEPnZIXLCQcTZLiLOazm4LSDC1NJcygqyD35HwAljYyAeN8SNOSysRUbqJfaGVP7RkjKXjjHmEWyoD9/202GvDfDxZBxLqUwzEI3R0RehozdCR1+E9t4Ie9t6ae0ewADtvYO09QzSM2DD+UDPIPsO9BKJja0dJwJ54SC5WSHysoLkZdnWYV5WkJK8sN0eDpIVChAQKM3PoiA7RHY4SE4oQG5WkJyQ/ZnscIDsUIDskA337LAN0KFgBtuV4uVA9bOMnjxNqXSKxOIc6BmkzQnoAz0R2noHae0eYGfzoT7mWNzQ3mc/P9A7SO9gbMTvCwaEgEBJXhaleWEKsm1reUFlIcsWVZCfFSIcDBAOivNsW7DlhdlUleQwIT/7YKs7nQGsYe9dGvjK86KxOE1dtpukvqOfxs4BuvujdA9EqOvoZ3dzD/sO9NJ1lK6QqaW5THS6HAICkwpzmFdRyIS8LErywhTnZVGSG6bYeUwpyaWsIEvDU2UUDXx1QhuMxqlr76Oxs5/GrgEanFBv6OinrqOfho4+mrsGGOkaYk44QEVRDrPK8qmeWUpZQTal+VlMyMuiND/MxPxsSvPDlOZlEQ7qtFPqxKeBrzLeQDRGg9My39/ey/bGbl5v7GZXczd723rfMCIkPytIZUkulcU5zK8oZ3KxfT25OIfK4hwqCnMozAkR0hBXPqOBrzLGYDTOrpZutjV0OaHexfambva29hzWQg8FhFll+cyfXMgVp1YyY2I+k4tyqCjKZnJxDoU5Yff+EEplMA18lXbGGOo7+tlQ287O5h72t/exsbaDrQ2dB0euBAPCzIl5LJhcyFWnVjJtQh6Ti3OYXJTDjIn5bxgKqJQ6Ng18lVL9kRib6zp5peYAW+q72Nvaw+6WHlp7Bg/uU5wbZtGUIj503mwWTiliXkUBs8ryyQ4FXaxcKe/RwFdJY4xhb2svz+1s5e87W9ha38me1kN97BVF2cwqy2fZwgpOrizi1KnFzJ9cSF6W/jVUKh30N02NWzQW5+WadlZtbWRjbQeb9nccvMtzSnEOi6qKWX5KJYurilk6rYRJRTkuV6yUv2ngqzGLxw2v7GvnyS2NrN3Txsb9HfRH4mQFAyyoLOTKJVM4paqYM2aUMndSgY5BVyrDaOCroxqIxnh+ZyuPb27kyS2NNHcNEAoIp0wt5oazplM9YwIXzi+nIFv/KimV6fS3VL1BV3+Ep7c185fNDaze1kz3QJS8rCBvmT+JSxdVcNH8SRTn6tBHpU40GvgKgKaufp54rZG/bG7kuZ0tRGKGsoIsrjy1kksXVXDOnLKDk2sppU5MGvg+1jcY48ENdfzupX28XHMAY2DGxDw+cO4sLl1YwdLppQQD2g+vVNoYA4PdMNgDhZOT/vUa+D60s7mblS/UcO+6fXT2R5k7qYDPXDKPSxdNZl6FXmxVKimiA9DVAN2Nh567GyHSZx8DXdB3APrb7XNfu30dj0LBZPjXbUkvSQPfJyKxOE++1shdL+zluZ2thIPCZYsree/Z0zlr1gQNeaVGEo/bEO5pto/eVoj0Q7QfBjqht81u625yAr0JIr1gnJ87kgQglAuhbMgpgpwSyC2F4qn2eeh9fnlK/jjeDPx4zJ7woF5YbOzsZ+WaGu55sYamrgGqSnL53Nvmc231NMoLs4/9BUp5yWEB3gK9Lfb5sNdOsPe02Gcz8noHAARCkDcR8idBwSQoXwDhXBvsBRVQWGFb60PP+eUQcG9aEG8G/tenwNkfhWVfdbsS1+xu6eHXz+/hN2tqGIzFuXBeOd940wwumj9J++WVt0QHbEh3NzmB3eS8bz7UMj/4aBk9wHNKIL8M8spgwmyYeqYN8bwyuz2/3IZ7OBeCWbaFnl2U2jUJk8ybgR/Ktv/t8qGa1l6+88Q2Hni1jqAIK06r4lMXn8SMiflul6bU2EUHoave6ftuOCLAnWAfCviBjpG/I5wPBeU2qEtmQNUZ9nV+uRPgZYfCPG+iL3oEPBr4ObaPzUfaewf54VM7uPP5PQQDwkcvmMMHz52p0xmozGKM7ffuqrePzrphzw3QVQed9bZ75Q0E8iYcCu3KJbYFnl9mu1Tyy4e9L4csbeQcycOBP+B2FWkxEI1x1/N7+Z+ndtDZH+HaM6bxmUvnUaFBr9It0g8dtdBR47TGm6BpC7TtsiNS+jvthc3YCL+b+eVQWAlFVVBV7byuhMIpNsSHulaC3oysdPHm2QvlQLTP7SpS7umtTXz5wc3sbe3l/Lll/Nvykzm5ssjtspQXxeP2AmZXHbTutMHe3wHtNc5jr22pHylvIkxaCKUzIbvQBnfhFDvGvGiKDfaCCghlpf2P5EceDfxsT7fwGzv7+eqDr/HwxnpOmlTAnR88iwvnpWYYl/KRWMT2ibfthNYdzsN5fWAPxAYP318CUDQVSmfAnLfafvLSGVA8zYZ4/kR7IfQEuqjpdd4M/HCuJ/vw43HDyhdr+NajWxmIxfnXS+dx0wVzdPUnNXY9rTbQ23bb56bXbLdLZz1Eeg7fN5gNE+dA+XyYf7kN98LJNtRLZ9k+8oBOt3Ei8Wbge3CUTk1rL5+791XW7G7j3JMm8rWrT2FmmV6UUiOIDthAb90OLdttC71lu33fd+DQfhKwww8nnQxz3wa5zk0/E2ZD2Vzbn66B7ikeDfwce4HIA4wx/H7tPr78wGuEAsI3rzmFa6un6Z2xfmeMvQA6FOQtOw4FfPtee+PhkILJNsAXXm2fJ8yxoV4yHcJ6cd9PvBv4HujS6RuMceufN/Knl/dz7kkT+fY7lzClJNftslQ6xaJwYLcd6bL7WWjeBp37oX0fDHYd2i+UCxNPgimnwSnvssE+8ST7yNEL+cpKKPBFZALwO2AmsAe41hhz4Ih9pgG/BiYDceAOY8wPEjnuMXkg8Pe29vDRu9axrbGLT18yl0++da7eIetlxthRLvUboHkrtLwOjZvt66G/y8Ese+t+6UyYed6hQC+b53S/6LUcdXSJtvBvAVYZY24TkVuc9184Yp8o8FljzMsiUgisE5EnjDGvJXjs0YVP7HH4z+1o4Z/uXkcgIPzq/Wdy0fxJbpekkskYe6NR/XqoW3/ouafp0D4Fk2HSAjjzw1CxyIZ85RK9mUglJNHAXwFc5Ly+E1jNEYFvjKkH6p3XXSKyBagCUhf4oRw7/egJ6Pcv7ePf7tvI7PJ8fnHjmUybkOd2SSoRxtgx68PDvf5VO0UA2Aun5QvgpEtsd0zlEvs+t8TdupUnJRr4FU6gY4ypF5GjNkVFZCawFFhzlH1uAm4CmD59+viqOgHH4cfjhtv/so0fr97J+XPL+NF7Tqcox/tze3iKMdCx7/BWe/16e8MSgARtmM+9FCpPswFfsRiy9B91lR7HDHwReRLb/36kW4/nQCJSAPwR+LQxZtQhNMaYO4A7AKqrq83xHOOgkDMO35gT4qaPaCzOZ//wKvevr+PdZ0/nK29fRDio/bEZr6cV9r0AtWsPBXxfm/1MgvYO0/mX23CvPA0mL7b3iCjlkmMGvjHmktE+E5FGEal0WveVQNMo+4WxYb/SGPOncVc7VqFswNg7A0OZPed7NBbn5t+t5+EN9XzubfP554vm6JDLTGSMHS1T8wLUPG+fW163nwVCdiz7giucbpmltt9dhzyqDJNol84DwI3Abc7z/UfuIDa9fgFsMcZ8N8HjjU3I+UWL9md04EdicT59z3oe3ljPrctP5iMXzHa7JDUkFoXGjYcHfHej/SynBKa/CU57N0x/s229a7irE0CigX8b8HsR+RBQA7wLQESmAD83xiwHzgXeB2wUkfXOz/2bMeaRBI89uqFfvkg/5BSn7DCJiMTifOq3r/Dopgb+3xUn8+HzNexdNdhju2aGAr72JbuYNEDxdJh1oQ35GedA2XwdAqlOSAkFvjGmFbh4hO11wHLn9d+A9PZRDG/hZ6DBaJxP/vZlHt/cyL9fuZAPnTfL7ZL8Z6AbGjbYfvcdT8LuZ+zi0Yi9kLrkBhvw099k1xtVygO8e6ctZORInXjc8Nk/vMrjmxv50lUL+cC5GvZp09tmw33LA/D644dmfyyZAW/6Z5h1gV3WTodEKo/yeOBn3lj87z/5Og++WsfnL5uvYZ9q8Tg0boKdq2zA71tj55jJnwTVH4I5b7H974UVbleqVFp4PPAzq4V/3yu1/PdTO7i2eiofu3CO2+V4U1cj7HzKPnY9fegGp4pT4PzPwrzLYcpS7YNXvuTNwD940TZzWvgv7WnjC/du5M2zJ/JfV5+iQy+Tqb0GtjxoHzUvAMYumTf7LXZhjtkX2eXylPI5bwZ+hrXw97X18tG71jG1NJefvPd0XbAkGVp3wmv32/74ulfstorFcNEXYf5ltkWvrXilDuPRwHfG3mfAKJ2BaIyP/+ZlIrE4v3j/mZTk6dqd42KMXZ3ptQdsyDc5UzFVnQGXfBlOfrtdnUkpNSqPBr5z+3oGBP7XH97ChtoO/vd9ZzBLV6g6fr1tsO1RePF/7aRjiL3Z6bLb4OSrdMikUsfBo4GfGS38hzbUcefze/nwebN426KRpiNSI4r02+6a9XfDnr+Didl535ffblvyOqpGqXHxZuAPTVDlYh/+ruZubvnjRk6fXsIXLl/gWh0nlJYdsO5XsH6lXXt1wmw492ZYcKWOrFEqCbwZ+EMtfJdG6QxG43z8N68QDgo/fPfpOvPl0XTst635bY/Anr/aicgWXAnVH7Q3QuloJqWSxqOB7+4onZ8+s5Mt9Z387B+rdQ3akUQHbcC/cre9KcrE7TJ9b/13WPo+7bJRKkW8GfjBsJ2P3IU7bXc0dfHDp3Zw1ZIpLFuowXWYjlp4/sew4R67KEjhFDjvM3bWSR1ho1TKeTPwwVnIPL0t/HjccMsfN5KXHeRLVy1M67EzWssOeOHHtkVv4rBgOSz9Rzu1QSDodnVK+YaHAz877aN0Vr5Yw9q9B7j9XUsoK8jcefjTwhjbJ//8j+D1xyCYBadeBxd+HkrGuXSlUioh3g38cK4d3pcm9R19fPPRrZw/t4xrTq9K23EzjjF2DpvVt9nJyvLK4MJb4MwPQcFRlzxWSqWYdwM/zS38rz74GtF4nK/5dZ6cSD+8fCesuxOaNkPRVLjiO3Dae3U1KKUyhIcDPzdtgb9mVyuPbmrgs8vmMX1iXlqOmTFiUXj1N7D6m9BZa6c6uOoHdgGRDF5eUik/8nDgp6eFH48b/uvhLVQW5/hrmcJ4HF77Mzz9NWjdYYP+6h/D7AvdrkwpNQoPB356Run8ef1+Nu7v4HvXLSE3ywcjToyB7U/AU1+Fho1QfjJc/xuYv1xvklIqw3k38MO50N+e0kP0R2J867FtnDq1mBVLfHChdu9zsOqrdpHv0pnwjp/B4mt0aKVSJwhvB35nXUoPsXJNDQ2d/XzvutMIBDzcum3bBX/5d9j6EBRMhiu+a++IDelUz0qdSLwb+Fn5EOlJ2df3R2L89JmdvHn2RN48Z2LKjuOqgS7463fh+R9CIAwX/wec/THI8tmFaaU8wruBH85L6eRpd7+wl+auAX54w9KUHcM1xtgJzR67Bbrq7Yibi7+kywQqdYLzbuBn5cNgb0q+um8wxk+f2cU5cyZy9myPte4P7IVHPgfbH4fJp8K1d8G0M92uSimVBN4N/HAeRHptazXJo0d+82INLd0D/Pg9pyf1e10Vi8ALP4HV3wAE3vZ1OOujEPTuXxGl/Ma7v83hXMDYbp0k9jlHY3F++bfdnDVrAmfNmpC073VV7Vp48NPQuBHmXQ7Lvw0l09yuSimVZAmtzCEiE0TkCRHZ7jyXHmXfoIi8IiIPJXLMMcty1o+NJLdb59FNDexv7+MjXrjJqr/Tdt/8/BI7XfF1d8MNv9WwV8qjEl2K6RZglTFmLrDKeT+am4EtCR5v7MJOqz6JgW+M4ed/3cWssnwuXnCCTwS240n40dnw4s/grJvg42vsouB685RSnpVo4K8A7nRe3wlcPdJOIjIVuAL4eYLHG7uhbpwkXrh9ac8BXq3t4IPnzTpxx93H4/DX78Dd74TcEvjwKlj+LcgpcrsypVSKJdqHX2GMqQcwxtSLyGjN3u8DnwcKEzze2IWHunSSNxb/53/dRUlemHeePjVp35lW3c1w30ftsoKLr4G3/1DH1CvlI8cMfBF5Epg8wke3juUAInIl0GSMWSciF41h/5uAmwCmT09goYyws5Zsklr4de19PLGlkY9dOOfEnDNn1zPwp49Afwdc+T044wPafaOUzxwz8I0xl4z2mYg0ikil07qvBJpG2O1c4O0ishzIAYpE5G5jzHtHOd4dwB0A1dXVZix/iBEl+aLtvetqMQauP/MEW60pFoVnboNnb4eyufC++6BikdtVKaVckGgf/gPAjc7rG4H7j9zBGPNFY8xUY8xM4HrgqdHCPqmGLtoOJt6lE48bfr92H+fMmXhizXff0wp3XQ3PftsuFH7Tag17pXws0cC/DVgmItuBZc57RGSKiDySaHEJGeqbTsL0Cs/vaqX2QB/XnXkCDVds2gI/ewvsexGu/omdq37ofz1KKV9K6KKtMaYVuHiE7XXA8hG2rwZWJ3LMMQsnr0vndy/toygnxNsWjXQpIwNtewz++GF7HeP9D+vUCEopIPEWfubKSk6XTkdvhMc2N3D10ipywhl+sdYY+PsP4LfXw4RZcNPTGvZKqYO8O7VCyBmlk2AL/4ENdQxG41xbneHdOZF+eOjT8OpvYeEK242jXThKqWG8G/iBgA39BFv4D2+oY+6kAhZXFSepsBTo74TfXAc1z8FFX4QLPm///EopNYy3UyErL6EWflNXP2t2t3HFqRk8D3x/B9z9Dqh9Ea75BVx0i4a9UmpE3m3hg71wm8AonUc3NmAMXHFKhgZ+bxusfCfUvwrv+j87F45SSo3C24GflZdQl87DG+qZX1HI3Ir0zQgxZm27YeW7oH0vXPtrWHCF2xUppTKct//vH84dd5dOQ0c/L+3N0O6c5tfhV5dDbwv84/0a9kqpMfF2Cz88/mUOH91UjzGwPNO6cxo2wq+vBgnA+x+BioVuV6SUOkF4u4WflTfu2TIf2VjPgsmFnDSpIMlFJWD/y/B/V0IoGz7wqIa9Uuq4eDvww3njumjb3jvIur0HuDST7qytWw+/XgE5xTbsy05yuyKl1AnG2106WePr0nl2ewtxAxfNL09BUePQutOOxskpsWFfXOV2RUqpE5APWvjH36WzelsTpXlhlkwtSUFRx6mr0Y6zN3E7tbGGvVJqnLzdwg/nHncLPx43PPt6C+fPLSfo9jKG/Z2w8hroboIbH9JuHKVUQrzdws8uhNgAxCJj/pHX6jtp6R7gwnkud+dEB+B377HTHF97F0w9w916lFInPO8HPsBA15h/ZPU2u2jXBW4Gfjxu157d/Sys+DHMHXXRMaWUGjOPB36RfR7oHPOPrN7WzClVxZQXZqeoqDF45puw+T5Y9lVYcp17dSilPMXjge+08PvHFvgdvRFerjngbnfOlgftGrRL3g3nfMq9OpRSnuPtwM8ZauGPrUvnuZ12OOaFbg3HbNoC9/0TVJ0BV34PxOWLxkopT/F24B9nH/6a3W3khAPuDMfsOwD3vNveO3Dd3RDOSX8NSilP8/awzGxn0ZIx9uGv2d3GGTNKyQql+d/BeAzu/SC077Nr0BZNSe/xlVK+4JMW/rEDv6M3wtaGTs6eNTHFRY3gyS/Dzqfgitth+tnpP75Syhf8EfhjuGj70p42jIGzZk1IcVFH2PAHeO6/ofpDcMb703tspZSveDvww7kQCI2pD/+lPW1kBQOcNi2N/fd16+GBT8D0c+Cy29J3XKWUL3k78EVsK38Mgf9yzQEWVxWREw6moTCgpwXueQ/kTYRr74RQVnqOq5TyLW8HPtibr47Rhz8YjbOhtoOl00vTU5Mx8Od/hp5muH4lFExKz3GVUr7m7VE64AT+0Vv4W+o7GYjGOT1dgb/2l7D9cduNM2Vpeo6plPI977fwc4qOedH2lZoDACydnob++5bt8PitMOetcNZHU388pZRyJBT4IjJBRJ4Qke3O84hNZBEpEZF7RWSriGwRkTcnctzjkl14zC6dl2vamVyUw5SS3NTWEovAnz5ib6pa8WMIeP/fW6VU5kg0cW4BVhlj5gKrnPcj+QHwmDFmAbAE2JLgccduDBdtN+7vYMm04tTX8rfvQ90rcOX3oSjDFkdXSnleooG/ArjTeX0ncPWRO4hIEXAB8AsAY8ygMaY9weOO3TEu2nb2R9jd0sMpVSkO/IaNdhbMxdfAojecJqWUSrlEA7/CGFMP4DyPNNxkNtAM/EpEXhGRn4tI/mhfKCI3ichaEVnb3NycYHkcs4X/Wp39x2BxKgM/OmgnRcstheW3p+44Sil1FMcMfBF5UkQ2jfBYMcZjhIDTgZ8YY5YCPYze9YMx5g5jTLUxprq8PAmzVuYUQWwQIv0jfrxpfweQ4sB/9tvQuAmu+gHkpflOXqWUchxzWKYxZtTllkSkUUQqjTH1IlIJNI2wWy1Qa4xZ47y/l6MEftJlD5sieYQZKDft76CyOIeyghQteFL3Cvz1O7DkBliwPDXHUEqpMUi0S+cB4Ebn9Y3A/UfuYIxpAPaJyHxn08XAawked+yOserVxv0dLJqSotZ9PAYP3gz55Tp1glLKdYkG/m3AMhHZDixz3iMiU0TkkWH7fRJYKSIbgNOAryd43LE7OIFaxxs+6huMsbulh0VTilJz7LW/hPpX4bJvQK4Lc+wrpdQwCd1pa4xpxbbYj9xeBywf9n49UJ3IscZtqM+878AbPtrR1E3cwILJhck/blcjrPpPmP0WWPQPyf9+pZQ6Tt6/8yfPmd++t+0NH21tsN0881MR+E/8O0T77KgcXapQKZUBfBT4rW/4aFtDF9mhADMmjjpKdHz2Pg8bfmcXIS87KbnfrZRS4+T9wM8pBgmMHPiNXcytKCAYSGILPB6Hx74AhVPg/M8k73uVUipB3g/8QNDe8DRKC39+RZIv2K5faS/ULvuqXZBcKaUyhPcDH2y3zhGBf6BnkKaugeResO3vgFVfgWlvglPembzvVUqpJPD+fPgwYuBvb+oG4KSKguQd59lv25Ws3vMHvVCrlMo4vm3h72x2Ar88SYHfsgNe+CksfY8uaqKUyki+Dfxdzd1khwLJmwP/yS9BKAfe+h/J+T6llEoyfwW+MQc37WruYVZZfnJG6NSth60PwTmfgMKKxL9PKaVSwD+BH48eNp/OzuZuZpcnaRTN6m9ATgm86WPJ+T6llEoB/wQ+HOzWGYzG2Xegj9llSei/r10Hrz8G53zSjvlXSqkM5bPAt9Mr1LT1EIub5LTwV38dcifA2boguVIqs/ks8G0Lf0dTDwBzEh2hU7MGdjwJ5958aFZOpZTKUD4JfGfGTCfw97TawJ9ZlmAL/+mv2bnuz/pIYt+jlFJp4I/Az3eWSuxuBKCmrZeSvDDFueHxf+eev8HuZ+C8f9EpFJRSJwR/BH52AWQXQ2cdADWtvcyYkDf+7zMGnv46FFRA9QeTVKRSSqWWPwIfoHgqdNQCtoU/LZHA3/0s7P07nP9ZCCfpxi2llEoxHwV+FXTUEo3F2d/ex4yJ4wz8odZ9URWcfuOx91dKqQzhn8AvqoLO/dS19xOLG35/CN0AAAurSURBVKaPt4W/cxXse8Fp3eckt0allEoh/wR+cRX0tlLbZMfiT58wjgutQ6374mmw9H1JLlAppVLLP4FfNBWAlvpdAOPr0tn+F9i/Di74HISyklmdUkqlnH8Cv7gKgO6mvWQFA1QUHWd3jDF23H3pTDjt3cmvTymlUsxHgW9b+LED+6gqzT3+WTK3PmyXLrzwCxBMYPy+Ukq5xD+BX2Rb+MGu/VQd7xz48bidEXPCHDjl2hQUp5RSqeefwA9lQ345uX0NTCk5zu6cLQ9A4ya46BYI+mNVSKWU9/gn8IF46UwqY/upKjmOC7bxmG3dl82HxdekrjillEoxXwV+T/F85ss+phRnj/2HNt8HzVtt6z4QTF1xSimVYgkFvohMEJEnRGS781w6yn7/IiKbRWSTiPxWRFy5Y6k5bzal0s3M7K6x/UAsCqtvg0mLYOHVqS1OKaVSLNEW/i3AKmPMXGCV8/4wIlIFfAqoNsYsBoLA9Qked1xqgjMBmB7dM7Yf2HQvtG6Ht3wRAr76z5BSyoMSTbEVwJ3O6zuB0ZrBISBXREJAHlCX4HHHZZuZDsDEnu3H3jk6aO+qnXwqLLgyxZUppVTqJRr4FcaYegDnedKROxhj9gO3AzVAPdBhjPnLaF8oIjeJyFoRWdvc3JxgeYfb1ZNNM6WEWrYee+d1/wfte+GSL4Ec55h9pZTKQMcMfBF50ul7P/KxYiwHcPr1VwCzgClAvoi8d7T9jTF3GGOqjTHV5eXlY/1zjMn+9j72h2dC4+aj7zjQDc9+C2aeD3MuTmoNSinllmMOKjfGXDLaZyLSKCKVxph6EakEmkbY7RJgtzGm2fmZPwHnAHePs+Zxq2vvo65wMac1rrQLmg8tfXik538EPc1ww++0da+U8oxEu3QeAIYmhb8RuH+EfWqAN4lInogIcDGwJcHjjktjZz91ky4AE4cdq0beqasBnvsfOPkqmHpGegtUSqkUSjTwbwOWich2YJnzHhGZIiKPABhj1gD3Ai8DG51j3pHgcY9b90CUnsEY0clLIa8Mtj8+8o6P3QKxQbjkK+ktUCmlUiyheQKMMa3YFvuR2+uA5cPefwn4UiLHSlRTZz8AFcW5MHcZbHsUYpHDJ0Lb+rC90eott8LEOS5VqpRSqeGbweWNnQMAVBTmwKJ3QH+7HYkzpKMW7v+4HYZ57s3uFKmUUinkm5nAmrpsC39SUQ6UL4NZF8BT/wUnXWL79Fe+07b43/krO9GaUkp5jI9a+E6XTlG2HXlz2TdtwP+wGv7ndDtq531/hrKTXK5UKaVSwzct/MbOAfKyghRkO3/kioXwiZdgzU8hpxhOvQ5KprlbpFJKpZCPAr+fSYXZyPBx9cVVcOl/uleUUkqlkW+6dJo6B2z/vVJK+ZRvAr+xq//4Fy5XSikP8UXgG2No6hygolBH3yil/MsXgd81EKUvEtMWvlLK13wR+EN32U4q0ha+Usq/fBH4B++y1Ra+UsrHfBL4QzddaeArpfzLJ4FvW/iT9KKtUsrHfBL4/RRkh8jP9s19Zkop9Qa+CPymrn69YKuU8j1/BH7ngJ0WWSmlfMwXgW/vstUWvlLK3zwf+MYYGjsHdISOUsr3PB/4HX0RBqNxnThNKeV7ng/8QzddaZeOUsrffBD4etOVUkqBnwJfR+kopXzO84Hf1OXcZatdOkopn/N+4Hf2U5QTIiccdLsUpZRylecDX4dkKqWU5f3A16UNlVIKSDDwReRdIrJZROIiUn2U/S4TkW0iskNEbknkmMfLLl6u/fdKKZVoC38T8A7g2dF2EJEg8CPgcmAhcIOILEzwuGMSjxuatIWvlFIAJDRfsDFmC4CIHG23s4Adxphdzr73ACuA1xI59lgc6B0kEjO6eLlSSpGePvwqYN+w97XOthGJyE0islZE1jY3Nyd0YF3aUCmlDjlmC19EngQmj/DRrcaY+8dwjJGa/2a0nY0xdwB3AFRXV4+631g0duni5UopNeSYgW+MuSTBY9QC04a9nwrUJfidY9Lk3GU7Se+yVUqptHTpvATMFZFZIpIFXA88kIbjHuzSKdc+fKWUSnhY5j+ISC3wZuBhEXnc2T5FRB4BMMZEgU8AjwNbgN8bYzYnVvbYNHT2MzE/S++yVUopEh+lcx9w3wjb64Dlw94/AjySyLHGo769j8nF2p2jlFLg8Ttt6zv6qSzOdbsMpZTKCD4IfG3hK6UUeDjwewejdPRFqCzRwFdKKfBw4Nd32CGZ2sJXSinLs4HfcDDwtQ9fKaXAw4Ff194HaAtfKaWGeDbwh1r4Oo+OUkpZng38ug696UoppYbzbODXd+hNV0opNZxnA39nczezywvcLkMppTKGJwO/ZyDKvrY+5k3SwFdKqSGeDPztTd0AzJtc6HIlSimVOTwZ+K83dAEwv0IDXymlhngy8Lc1dpETDjBtQp7bpSilVMbwZOC/3tjF3EmFBANHXVxdKaV8xZOBv62hi3nanaOUUofxXOBHYnHOn1vO+XPL3C5FKaUySkIrXmWicDDAd65d4nYZSimVcTzXwldKKTUyDXyllPIJDXyllPIJDXyllPIJDXyllPIJDXyllPIJDXyllPIJDXyllPIJMca4XcOoRKQZ2DuOHy0DWpJcTjJkYl2ZWBNoXccjE2sCret4JLOmGcaY8pE+yOjAHy8RWWuMqXa7jiNlYl2ZWBNoXccjE2sCret4pKsm7dJRSimf0MBXSimf8Grg3+F2AaPIxLoysSbQuo5HJtYEWtfxSEtNnuzDV0op9UZebeErpZQ6gga+Ukr5hOcCX0QuE5FtIrJDRG5xux4AEdkjIhtFZL2IrHWxjl+KSJOIbBq2bYKIPCEi253n0gyp68sist85Z+tFZHmaa5omIk+LyBYR2SwiNzvbXT1fR6nLtfMlIjki8qKIvOrU9BVnu9vnarS6XP275dQQFJFXROQh531azpWn+vBFJAi8DiwDaoGXgBuMMa+5XNceoNoY4+rNHiJyAdAN/NoYs9jZ9i2gzRhzm/MPZKkx5gsZUNeXgW5jzO3prGVYTZVApTHmZREpBNYBVwPvx8XzdZS6rsWl8yUiAuQbY7pFJAz8DbgZeAfunqvR6roMF/9uObV9BqgGiowxV6br99BrLfyzgB3GmF3GmEHgHmCFyzVlDGPMs0DbEZtXAHc6r+/EhkdajVKXq4wx9caYl53XXcAWoAqXz9dR6nKNsbqdt2HnYXD/XI1Wl6tEZCpwBfDzYZvTcq68FvhVwL5h72tx+ZfBYYC/iMg6EbnJ7WKOUGGMqQcbJsAkl+sZ7hMissHp8kl7V9MQEZkJLAXWkEHn64i6wMXz5XRRrAeagCeMMRlxrkapC9z9u/V94PNAfNi2tJwrrwW+jLDN9X/RgXONMacDlwMfd7ow1NH9BJgDnAbUA99xowgRKQD+CHzaGNPpRg0jGaEuV8+XMSZmjDkNmAqcJSKL03n80YxSl2vnSkSuBJqMMevSdczhvBb4tcC0Ye+nAnUu1XKQMabOeW4C7sN2PWWKRqdfeKh/uMnlegAwxjQ6v6xx4Ge4cM6cft8/AiuNMX9yNrt+vkaqKxPOl1NHO7Aa20/u+rkaqS6Xz9W5wNud63r3AG8VkbtJ07nyWuC/BMwVkVkikgVcDzzgZkEiku9cXENE8oFLgU1H/6m0egC40Xl9I3C/i7UcNPSX3/EPpPmcORf8fgFsMcZ8d9hHrp6v0epy83yJSLmIlDivc4FLgK24f65GrMvNc2WM+aIxZqoxZiY2n54yxryXdJ0rY4ynHsBy7EidncCtGVDPbOBV57HZzZqA32L/CxvB/m/oQ8BEYBWw3XmekCF13QVsBDY4vwyVaa7pPGx34AZgvfNY7vb5Okpdrp0v4FTgFefYm4D/cLa7fa5Gq8vVv1vD6rsIeCid58pTwzKVUkqNzmtdOkoppUahga+UUj6hga+UUj6hga+UUj6hga+UUj6hga+UUj6hga+UUj7x/wGDcFlTPhqMpAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdbklEQVR4nO3deXCcd53n8fe3D933YUu2JB+yHdtJ7JAoTmISCBCGnGSBKUgYjmEym5otGGaX2RqgGJihdmpgtoCiapgFAmEZhhmyYQgkIdkNCSEHJCQ+4jg+Y8uXZElW62qppe5WH7/9Q7LHcSxbto6n1c/nVaWy9ETd/dEv0kePfs/veR5zziEiIvkv4HUAERGZHyp8ERGfUOGLiPiECl9ExCdU+CIiPhHyOsC51NXVueXLl3sdQ0RkQdm2bVufc67+zO05XfjLly9n69atXscQEVlQzOzo2bZrSkdExCdU+CIiPqHCFxHxCRW+iIhP5GThm9kdZnZfNBr1OoqISN7IycJ3zj3qnLu3srLS6ygiInkjJwtfRERmX06vw5eFL53JknGOwlCQ8XSW3pEEkZEk9eWFNFWXnPq8zsEx+mPjhIJGJus4NjBG52CctmXVtC2vASCbdTy19wS9I0lqSgu4ormKJVXFjCbTlBQEMTOcc2SyjlAwQCqTJRQwthwZZDie4p1rFxEI2KnXTGWy9I4kWVJZRNZBMDDx+HgqQzBghAMBAgGjayhOMGAsriia8mvc0THEhqYqCkLztw/lnMPMzrttvjNI7lLhy5SyWUc66zCDJ/ec4MuP7uaG1fV85t1rCAaMPd3D1JYWMDiWYmfHEI/v6qEnGufOK5byyrFBRsczHB+MYwZXNFex9cgg45ksAGbwttX1LKkq5qXD/RyKjE6Zo21ZNeuXVLC3e5gtRwZPbQ8GjEuXVLCzM8rKulJqywpoj4wymkxzRXMVrxwbAjj1mivqSiktDNIxEOeShnL6Y0naI6MUhQMkUlnWNpQzkkhzfCh+KuOi8kJODCcJB43rWuvoHBwDBzetX4xzjp2dUY4PxekcjHPVsmquWVFDMGA015Swo2OITMbxviuXsml5De2RGAd6Y2SyjshIktWLy0hnHU/tOcGxgTEKggGGEynKi8IEzNjXM0xJQZC+2DiXLqngziuWEg4ahyKjrFlczj8+fYDigiAfamumL5bkQG+Mp/acYENTFXdf08LrPSOcGE7w0euWsfXIIPFUhnWN5UTjKcbGM/z7tk7WNVZwy2UNdEcTvOOSRRSEArzY3kd3NEFhKEhJQZADvSOMJNIUh4PUlhUQH8/y0uF+jg/F6Y4mqCstYF1jBYXhAPdcv5LGyiLqywsJBwNkso6uoThN1cUMJ9Ls7BwiMpKktqyQTctrKC4IEkum6R6Kk0xnaY/EONI3Rn15ITesrqO5poRM1rGjY5DfHuinojhEVUmYbBZu39jI7q5hllQW01BZxHAixaHIKKlMluqSML/ZF6FnOMGGpkquX1VHPJXBzNh6ZICRRJoPXNlEKGiEgwG6o3EGR1OsbSjHDI72j2EGqczE/6vhRIqywhAtNSV0RxMAvKWlilDA2N01TP/oONmsoygcZM3iMsyMzzy4g/09I6xrrOCvb1tHQ2URJQUh9veM8NTeExQEA3zk2mW0R2J0Dk58T66oKyWVyfLg1g7uurqFYGB2f5laLt8Apa2tzelM2/nTH0vy9L5eeqIJjg/F+fW+XiIjSczAOVhZV8qxgTHS2bN/z2xsqqSiOMzzB/rY2FTJkqpiFlcUMZJI80rHIG9fU88li8upLy9k29FBntjdw4nhJFcuq+bGNfUsqy0hlXEEDJprSlhUXsgDWzr41e4eDveNUloY4tPvWs071y4iMpLkoe3HeaG9jxtW17GvZ4RUJktzdQmhYIBtRwe4dmUthaEAK+rKKAwFePjVLgIGDRVF/K69j3AwwN1Xt9AVjVNSEGTb0UFKCkK0La/GOYiPZ+gairOyvpTjQwleOtzP6kVljKezPPt6hIAZG5urKC8KcVVLNd95tp1kOosDMllHRdHE/tRIMk15YYjhRPqs41ZeGGJFfSmpzMRjhsZSJNMZNjRVkUhlqCwO8+zrEXpHkm94XH15IQGDE8MT2+vKCtncWsvT+3qJJdMEA0ZhKMDYeOasr7ustoRjA2OcrwJCAaOsKMRYMnPql+dlSytYUVdGY2URR/tHOdo/Ru9IkoHRcQCaa4q5fGklvzvYTzSeYkllEZFYklTmP16sMBRg04oadnQMMXKWsQkYXLqkkmMDY0TjqTf99+JwkHgqc2oMR5Jvfo6CUIDxdPasX1c4aKQyjrUN5bRHYqQyjrLCEEXhIH2x5Fkfc+brV5WET/0COF1FUYhEOsttlzfyq909jI5nMIONTVXs7Bzi5I9QQTBwakwBNrfWks44Xj4ywPc/1sZN6xefN8fZmNk251zbm7ar8P1l1/EoyXSGK1uq6RyME4kleXBLB+2RGLuOD5/6AaoqCXP18houX1pJOutorS/l1ssb6RgY45n9EcYzWa5ormI4nqKqpIA1i8uoKikAYDSZprQwv/947BqKEwoai8r/Y5pnbDyNYSTTGXqGE6xZVE4ineFbTx9kcGycK1sm/lIJBwNUlxSw9cgADrhp3eLzTgWlMlk6BsaIpzI0VZew/eggG5oqKS0M0R1N0FhZRFE4CEDvSIKeaII1i8sZTab59jPtvHV1HesaKjg+NEZNaSGpTJZV9WXs6R6mayjOkqpiXmjvI+smSmltQznxVIaRRJoVdaUUhAI454gl02SzUFkSflPGkUSKh3d0kck6HtreSe9IkutX1XFJQzm/PzTAiroS3r5mEUuqiiZ2KPb28tzrEVYvLuPWyxspCAZYWV/GstoSeqIJ/u3lY+zuitJSU8Lm1jpuWF3H6HiG+HiaYwNj/PyVLm5YVUcklqQ/Nk5NaZhLGiooDAXoHUmyrrGcSxaXs/N4lJcPD1BVPJF5eV0pwYDxxK4eCsMBthweZPXiMq5ormLX8SixZIa3tFRRFA4SChiLygupKA4zkkhzpH+UurJCMtksvz80wInhib+MWheVEgwEGEmkeLVjiJ2dUT7x1hVc11pLx8AYT+45QSSW5Kk9J7iutZZPv2s1+7pHeOy1LjatqGFlXRnPH4jwk5c76B9N8vfvu5z3X9l00d+fKnwfc87x5J4T/GLHcR5/rQeAyuLwqb2m4nCQjc2VrKgr5aPXLqd1USmFoaCXkUV8KZN1ZJ0jHJzZsaCpCj+/d8N8LpHKsP3oIN957hDPvR6hqiTMJ9/RSn1ZIa92RrlqWTU1pQVcu7KWmtICr+OK+F4wYASZu4PgOVn4ZnYHcMeqVau8jrIgvXCwj/t/e5jnD/Yxns5SHA7yP+68lLs3tRCa4Z6DiCxcmtLJI11Dcb72xH4eeuU4dWWFvHfjEt66qpZNK2ooL3rznKuI5CdN6eSp/T0jfPe5dl45NsSxgTEAPv2u1XzyHa2ahxeRN1DhL1DOOb79bDtf/9XrFIUCvP2Sem7f0MiHrm5+wwlNIiInqfAXqK/+331897lD3Lahkb+78zKqddBVRM5Dhb/AHO4b5WtP7Oex17r52HXL+PJ7L9Wp7SIyLSr8BWIkkeJvHt7Nz3ccpygU5L/dtIY/f+cqlb2ITJsKfwE4MZzgw9/7PUf6x7j3bSu55/oVbzjDU0RkOlT4OW5wdJyP3v8SPdEEP77nGq5rrfU6kogsUCr8HNYfS/KJH27hSP8YP/zE1Sp7EZkRFX4Ocs7xhV/s4oGXjxEw4zsfuYrNrXVexxKRBS4nC9/vl1b4xpOv828vHePuTS18fPMy1jZUeB1JRPJATl5Yxa/3tHXO8c2nXucfnz7IB9ua+Pv3XaayF5FZk5OF71c/3dbJN586wB9e1cRX3r9BSy5FZFap8HPE7q4oX3p4F5tba/mHD2yY9VubiYio8HPAtqOD3H3f76kqLuCbH7pCZS8ic0KF77HnD0T4yPdfoqa0gJ/+2XUsqtAJVSIyN3JylY5fdA6O8V9+vJ1ltSX86J5NOntWROaU9vA94pzjr/59J845vvexNpW9iMw5Fb5HHt3ZzQvt/Xz+1nU01+j69SIy91T4HkikMnz18b1cuqSCuze1eB1HRHxChe+B7z13iK5ogi/evl4rckRk3qjw59mJ4QT/65l2brmsgWtX6mJoIjJ/VPjzyDnHlx7eRSbr+Pwt67yOIyI+o8KfRz/d1skTu0/w39+zhpZaHagVkfmVk4VvZneY2X3RaNTrKLPmWP8YX35kN9eurOFPr1/pdRwR8aGcLPx8u1pmNuv4y5/uIBAwvv7BKwjoQK2IeCAnCz/fPPJqF1uODPLF29aztKrY6zgi4lMq/DkWH8/wD/9vH5ctreAPr2ryOo6I+JgKf459//lDdEcTfPG29ZrKERFPqfDnUO9wgm8/287NlzZwjdbci4jHVPhzJJt1fPZnO0lnHZ+/da3XcUREVPhz5V9fOspv9kf469vWsay21Os4IiIq/LmQzTrue/4QVy+v5qPXLvM6jogIoMKfE78/1E/HQJw/umaZbkQuIjlDhT8H/s/WDsqLQtx8WYPXUURETlHhz7J9PcM8+moXH2xrpigc9DqOiMgpKvxZ5Jzjy4/soaI4zJ+/c5XXcURE3kCFP4ue2N3Di4f6+ct3r6GqpMDrOCIib6DCnyWJVIa/e2wvaxvKddtCEclJKvxZ8uDWDjoH43zx9vWEghpWEck9aqZZkM06/vfvjrCxuYrNrbqEgojkJhX+LHh6Xy+H+0b50+tXaN29iOQsFf4suP+3h1lSWcQtWncvIjksJwt/Id3icHdXlBcP9fPxzcs1dy8iOS0nG2oh3eLw/ucPU1IQ5C6tzBGRHJeThb9QtEdi/GLHcT68qYXK4rDXcUREzkmFPwPffOoAReEgf3Zjq9dRRETOS4V/kXqiCR7b2cVHr1tGXVmh13FERM5LhX+Rfv7KcbIO7rpac/cisjCo8C+Cc46fbe/kqmXVrKjT3axEZGFQ4V+EnZ1RDvbG+MCVTV5HERGZNhX+RfjZ9k4KQgFu29DodRQRkWlT4V+gZDrDI6928QfrF2sppogsKCr8C/SbfRGGxlJ84CpN54jIwqLCv0CP7uyitrSAG1bVeR1FROSCqPAvwNh4mqf39nLL5Q26bo6ILDhqrQvw6729xFMZbt+wxOsoIiIXTIV/AX65s4tF5YVcvbzG6ygiIhdMhT9NI4kUv9kf4dbLGwkGdJMTEVl4VPjT9NTeE4yns9yxUWvvRWRhUuFP0y9f7aaxsoi3NFd7HUVE5KKo8KchOpbiuQMRbru8kYCmc0RkgVLhT8MTe3pIZRy3b9TqHBFZuFT40/DYzm6aa4rZ2JT7t1wUEZmKCv88omMpfnewj9suX4KZpnNEZOFS4Z/HM6/3ks463nPpYq+jiIjMiAr/PJ7e10ttaQEbm6q8jiIiMiMq/HNIZ7I8sz/CO9Yu0uocEVnwVPjnsPXoINF4inetXeR1FBGRGVPhn8Mvd3ZRHA7ytjX1XkcREZkxFf4UUpksj+3s5qb1iyktDHkdR0RkxlT4U/jtwT4Gx1K8VydbiUieUOFP4bGd3ZQXhXjbGt3ZSkTyw7wWvpmVmtk2M7t9Pl/3QqUzWX699wTvWruIwlDQ6zgiIrNiWoVvZj8ws14z23XG9pvNbL+ZHTSzz03jqT4LPHgxQefTliODDI6leM+lDV5HERGZNdM9GvlD4FvAj05uMLMg8E/Au4FOYIuZPQIEga+c8fg/ATYAe4CimUWee0/s7qEgFNDqHBHJK9MqfOfcc2a2/IzNm4CDzrlDAGb2AHCnc+4rwJumbMzsHUApsB6Im9njzrnsWT7vXuBegJaWlul/JbPoudcjbG6t1eocEckrM2m0pUDHaR93AtdM9cnOuS8AmNkfA31nK/vJz7sPuA+gra3NzSDfRemOxjnUN8qHr/Hml42IyFyZSeGf7VoD5y1o59wPZ/Cac+7F9n4Armut9TiJiMjsmskqnU6g+bSPm4CumcXx3gvt/VSVhFnXUOF1FBGRWTWTwt8CrDazFWZWANwFPDI7sbzhnOPF9n6uXVGri6WJSN6Z7rLMnwAvApeYWaeZ3eOcSwOfAp4A9gIPOud2z0YoM7vDzO6LRqOz8XTT1jEQ5/hQnM2rNJ0jIvlnuqt07p5i++PA47OaaOJ5HwUebWtr+8+z/dzn8kJ7HwCbNX8vInlIl1Y4zQvt/dSXF9JaX+Z1FBGRWafCn+Sc44X2fja31uretSKSl1T4kw72xuiLJblupaZzRCQ/qfAnvXhoYv395lZdHVNE8lNOFr4Xq3ReONjP0qpimmuK5+01RUTmU04WvnPuUefcvZWVlfPyetms48VDmr8XkfyWk4U/3/Z0DxONp7T+XkTymgofeOnwAADX6oCtiOQxFT6w/eggS6uKaazU/L2I5C8VPrD92CBvaanyOoaIyJzyfeF3R+N0RxNc2VLtdRQRkTmVk4U/n8sytx8dAuCqZSp8EclvOVn487ksc/uxQQpDAdY16vr3IpLfcrLw59Nrx6OsX1JBQcj3QyEiec7XLZfNOvZ2DXPpEu3di0j+83XhdwyOMZJMc+mS+TmjV0TES74u/N1dwwDawxcRX/B54UcJBow1i8u9jiIiMudysvDna1nm7q5hVi8qoygcnNPXERHJBTlZ+PO1LHN31zDrNZ0jIj6Rk4U/H3pHEkRGkjpgKyK+4dvC1wFbEfEb3xb+nsnC15SOiPiFbwt/d1eUlpoSKorCXkcREZkXPi58nWErIv7iy8KPJdMc7R9jvS6YJiI+4svCb++NAbCmQSdciYh/5GThz/WJV+2RicJvrS+dk+cXEclFOVn4c33i1aHIKMGA0VKjwhcR/8jJwp9r7ZEYy2pKdA18EfEVXzZeeyTGSk3niIjP+K7wM1nHkb4xWuvLvI4iIjKvfFf4nYNjjGeyKnwR8R3fFf6pFTqLNKUjIv7iv8LvHQVgZZ328EXEX/xX+JEYNaUFVJcWeB1FRGRe+a7wD0VGdcKViPhSThb+XJ5p2x6JaTpHRHwpJwt/rs60HRwdp390XAdsRcSXcrLw58qhvpPX0NEevoj4j68Kvz0ysUJHhS8ifuSrwj8UGSUUMJqqi72OIiIy73xV+B2DYzRVFxMK+urLFhEB/Fb4A2M015R4HUNExBMqfBERn/BN4Y8kUgyOpWiuVuGLiD/5pvA7BuIANNfogK2I+JN/Cn9wDIAWTemIiE/5p/AHJgpfUzoi4le+KfzOwTjlhSGqSsJeRxER8YRvCv/YwBhNNSWYmddRREQ8kZOFPxdXy+wairO0qmjWnk9EZKHJycKfi6tl9gwnaKzUCh0R8a+cLPzZFh/PMDSWoqFSe/gi4l++KPzu6MQa/EYVvoj4mC8KvyeaANCUjoj4mi8Kv/tU4WsPX0T8yyeFPzGlozl8EfEznxR+gprSAorCQa+jiIh4xheF3xNN0FChvXsR8TdfFH5XNKH5exHxPV8Ufk80rvl7EfG9vC/88XSWwbEUi8pV+CLib3lf+AOj4wDUlRd4nERExFt5X/h9sSQAtaWFHicREfGWbwq/Xnv4IuJzPij8ySmdMu3hi4i/5X3h95+c0lHhi4jP5X3h98WSFIUDlBboLFsR8be8L/z+2Di1pYW6taGI+F7eF34klqSuXNM5IiI5WfizeU/bvtg49WVaoSMikpOFP5v3tO2PJbUGX0SEHC382ZLNOvpHx3WWrYgIeV740XiKTNZpD19EhDwv/JNn2eqgrYhInhd+5GThl2pKR0Qkrwu//+RlFbSHLyKS34V/akpHl1UQEcnvwu+PjRMMGFXFYa+jiIh4Lq8Lvy+WpKa0gEBAl1UQEcn7wq/VAVsRESDvC3+ceh2wFREB8r7wkzpgKyIyKa8Lf+LSyJrSERGBPC780WSaeCqjNfgiIpPytvBPnnSlPXwRkQl5W/gRXUdHROQN8rbwT55lW6+DtiIiQB4X/skpnRpN6YiIAHlc+MOJFABVJbqsgogI5HHhR+MpwkGjOBz0OoqISE7I28IfjqeoKApjpuvoiIhAPhd+Ik2FrpIpInJK/hZ+PEVFUcjrGCIiOSN/Cz+R0h6+iMhp8rfw4yp8EZHT5W3hR+NpKopU+CIiJ+Vt4U9M6WgOX0TkpLws/EQqw3g6qz18EZHT5GXhnzzLVnP4IiL/Yd4K38xuNLPnzew7ZnbjXL7WcDwNoGWZIiKnmVbhm9kPzKzXzHadsf1mM9tvZgfN7HPneRoHxIAioPPi4k7PyT38Su3hi4icMt1d4B8C3wJ+dHKDmQWBfwLezUSBbzGzR4Ag8JUzHv8nwPPOuWfNbDHwDeCPZhZ9atG4pnRERM40rcJ3zj1nZsvP2LwJOOicOwRgZg8AdzrnvgLcfo6nGwSmvEi9md0L3AvQ0tIynXhvMnyy8HXQVkTklJnM4S8FOk77uHNy21mZ2fvN7LvAvzDx18JZOefuc861Oefa6uvrLyrYcGJyDl/LMkVETplJI57tMpRuqk92zj0EPDSD15s27eGLiLzZTPbwO4Hm0z5uArpmFmd2DCdSFIYCFOla+CIip8yk8LcAq81shZkVAHcBj8xOrJnRdXRERN5sWlM6ZvYT4Eagzsw6gb9xzt1vZp8CnmBiZc4PnHO7ZyOUmd0B3LFq1aqLevy6xgpCgbw8p0xE5KKZc1NOu3uura3Nbd261esYIiILipltc861nbldu8EiIj6hwhcR8QkVvoiIT6jwRUR8IicL38zuMLP7otGo11FERPJGTha+c+5R59y9lZWVXkcREckbOVn4IiIy+1T4IiI+kdMnXplZBDh6kQ+vA/pmMc5syMVMkJu5cjETKNeFyMVM4I9cy5xzb7rccE4X/kyY2daznWnmpVzMBLmZKxczgXJdiFzMBP7OpSkdERGfUOGLiPhEPhf+fV4HOItczAS5mSsXM4FyXYhczAQ+zpW3c/giIvJG+byHLyIip1Hhi4j4RN4VvpndbGb7zeygmX3O6zwnmdkRM3vNzHaYmWd3dTGzH5hZr5ntOm1bjZk9aWYHJv+tzoFMf2tmxyfHa4eZ3TrPmZrN7DdmttfMdpvZX0xu93qspsrl9XgVmdnLZvbqZK4vT273bLzOkcnTsTotX9DMXjGzX05+POdjlVdz+GYWBF4H3s3ETda3AHc75/Z4GoyJwgfanHOenvBhZm8DYsCPnHOXTW77n8CAc+6rk78kq51zn/U4098CMefc1+YrxxmZGoFG59x2MysHtgH/CfhjvB2rqXJ9EG/Hy4BS51zMzMLAb4G/AN6PR+N1jkw34+FYnZbvM0AbUOGcu30+fg7zbQ9/E3DQOXfIOTcOPADc6XGmnOKcew4YOGPzncA/T77/z0wUiNeZPOWc63bObZ98fwTYCyzF+7GaKpen3ITY5IfhyTeHh+N1jkyeM7Mm4Dbg+6dtnvOxyrfCXwp0nPZxJznwwzDJAb8ys21mdq/XYc6w2DnXDROFAizyOM9JnzKznZNTPvM6dXI6M1sOvAV4iRwaqzNygcfjNTlFsQPoBZ50znk+XlNkAu+/t74J/BWQPW3bnI9VvhW+nWVbTvxGB97qnLsSuAX45OQ0hkzt20ArcAXQDXzdixBmVgb8DPivzrlhLzKczVlyeT5ezrmMc+4KoAnYZGaXzXeGaWbydKzM7Hag1zm3bT5fF/Kv8DuB5tM+bgK6PMryBs65rsl/e4GfMzH9lCtOTM4Nn5wj7vU4D865E5M/rFnge3gwXpPzvj8D/tU599DkZs/H6my5cmG8TnLODQHPMDFX7vl4nZkpB8bqrcB7J4/rPQC808x+zDyMVb4V/hZgtZmtMLMC4C7gEY8zYWalkwfYMLNS4A+AXed+1Lx6BPj45PsfBx72MAtw6hv+pPcxz+M1ecDvfmCvc+4bp/0nT8dqqlw5MF71ZlY1+X4xcBOwDw/Ha6pMXo+Vc+7zzrkm59xyJjrqaefcR5iPsXLO5dUbcCsTK3XagS94nWcy00rg1cm33V7mAn7CxJ+xKSb+IroHqAV+DRyY/LcmBzL9C/AasHPyB6FxnjNdz8R04E5gx+TbrTkwVlPl8nq8NgCvTL7+LuBLk9s9G69zZPJ0rM7IeCPwy/kaq7xalikiIlPLtykdERGZggpfRMQnVPgiIj6hwhcR8QkVvoiIT6jwRUR8QoUvIuIT/x/tg0wKSWYJgAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "niw = 250\n", "siw_cont = siw[niw_full:niw_full+niw] - smom[0]\n", "err_cont = err[niw_full:niw_full+niw]\n", "wn = np.pi / beta * (2. * np.arange(niw) + 1.)\n", "\n", "w = 15. * np.tan(np.linspace(-np.pi / 2.1, np.pi / 2.1, num=1001, endpoint=True)) / np.tan(np.pi / 2.1)\n", "model = np.ones_like(w)\n", "model /= np.trapz(model, w)\n", "model *= -smom[1]\n", "plt.plot(wn, siw_cont.real)\n", "plt.plot(wn, siw_cont.imag)\n", "plt.show()\n", "\n", "plt.semilogy(wn, err_cont)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the `AnalyticContinuationProblem` for MaxEnt, and solve it. As a reasonable value for the blur width we take 0.16, but feel free to change it and see what happens." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1001 data points on real axis\n", "500 data points on imaginary axis\n", "48 significant singular values\n", "Precomputation of coefficient matrices...\n", "log10(alpha) = 14.00,\tchi2 = 3.081e+10, S = -3.738e-08, nfev = 7, norm = 4.661\n", "log10(alpha) = 13.00,\tchi2 = 3.068e+10, S = -3.717e-06, nfev = 13, norm = 4.661\n", "log10(alpha) = 12.00,\tchi2 = 2.940e+10, S = -3.521e-04, nfev = 17, norm = 4.660\n", "log10(alpha) = 11.00,\tchi2 = 2.050e+10, S = -2.267e-02, nfev = 20, norm = 4.670\n", "log10(alpha) = 10.00,\tchi2 = 4.430e+09, S = -3.019e-01, nfev = 45, norm = 4.864\n", "log10(alpha) = 9.00,\tchi2 = 5.098e+08, S = -8.163e-01, nfev = 49, norm = 5.336\n", "log10(alpha) = 8.00,\tchi2 = 3.976e+07, S = -1.421e+00, nfev = 58, norm = 6.039\n", "log10(alpha) = 7.00,\tchi2 = 4.827e+06, S = -1.830e+00, nfev = 81, norm = 6.101\n", "log10(alpha) = 6.00,\tchi2 = 7.135e+05, S = -2.431e+00, nfev = 58, norm = 5.420\n", "log10(alpha) = 5.00,\tchi2 = 6.462e+04, S = -3.271e+00, nfev = 101, norm = 4.917\n", "log10(alpha) = 4.00,\tchi2 = 3.372e+03, S = -4.003e+00, nfev = 72, norm = 4.724\n", "log10(alpha) = 3.00,\tchi2 = 3.268e+02, S = -4.327e+00, nfev = 71, norm = 4.683\n", "log10(alpha) = 2.00,\tchi2 = 1.973e+02, S = -4.491e+00, nfev = 110, norm = 4.675\n", "log10(alpha) = 1.00,\tchi2 = 1.824e+02, S = -4.710e+00, nfev = 68, norm = 4.674\n", "log10(alpha) = 0.00,\tchi2 = 1.787e+02, S = -5.256e+00, nfev = 179, norm = 4.674\n", "Fit parameters [1.74775315 9.08713472 6.59606319 0.53098732]\n", "Optimal log alpha 2.8294948871213905\n", "log10(alpha) = 2.83,\tchi2 = 2.775e+02, S = -4.357e+00, nfev = 24, norm = 4.681\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd1zVZf/H8dfFBgFFAQ3RIPdCMdyVKyvTHOXW1LRMu20vK+/Gnd11q5mZdffzLvfK3CtH5UwzUVFB1ByoCCKKCgjIONfvj4MbkHHgew58no8HDzjfs94y3n7P91zf61Jaa4QQQtgeO6MDCCGEKBwpcCGEsFFS4EIIYaOkwIUQwkZJgQshhI1yKMkn8/b21gEBASX5lEIIYfP27NlzQWvtc+f2Ei3wgIAAQkNDS/IphRDC5imlTuW0XQ6hCCGEjZICF0IIGyUFLoQQNqpEj4HnJCMjg+joaNLS0oyOYggXFxf8/f1xdHQ0OooQwsYYXuDR0dF4eHgQEBCAUsroOCVKa83FixeJjo4mMDDQ6DhCCBtj+CGUtLQ0KlWqVObKG0ApRaVKlcrsqw8hRNEYXuBAmSzv68ryv10IUTSGH0IRQohSJzMdEqPh8umbH8GDwCvAok8jBZ6DoUOH0rVrV3r16nXb9piYGF555RUWL17Mxo0bGTNmDOnp6Tg5OTFhwgQ6dOhgUGIhRInKvAZX7ijo6x9XzkBiDHDLWgvKDvybl+0CDxm3kQvJ6Xdt93Z3InRsp2J/fj8/PxYvXmx+Tm9vVq1ahZ+fH+Hh4Tz++OOcPXu22DMIISzvzm5xIgM/dYEGrpf5tot3djmfuVnSSbHcVdCe/lChOgS2NX+uUJ0XV50nItWLc9qLzOkZwBrAcp1lUwWeU3nntT2/Zs+ezcSJE1FKERQUhL29PVu3bmXSpEmcO3eO8ePH06tXL6KioujatSvh4eEEBwffuH+DBg1IS0vj2rVrODs7FymLECJ3Ft+JM5ng0klap2wmyOE4jexOcr+Ko4q6lH09sApQ9lC+KlS4H2q0v1HQlK9m/uzpB/Z3DwVe/9OaHJ+2qJ11nVUV+CerIjgUk1io+/b9v505bq/v58lHTzXI9X4RERF89tln/PHHH3h7e5OQkMAbb7xBbGws27dv5/Dhw3Tr1u2uwym3WrJkCcHBwVLeQhSzvHbiws5cJjPLREaWJtNkIjNLk5FlItOU/TnThNPVs3heCqfi5XAqXonAO/EQzlnJTHGCa9qRQ/p+tmU1Ilr73Pho/WAwV5y80cqBGytQJmZ/AFonAUdu7I9fv42m+JertKoCN8Lvv/9Or1698Pb2BqBixYoA9OjRAzs7O+rXr09cXFyu94+IiODdd99lw4YNJZJXiLLkSmoGx84nc+x8En/HJed52x7f/nHbZR8uEWR3wvyhTtDI7iTeyty6Gdqew7oam00tOKAf4KApkKPan8wcKvHQwUzgHGQPGLt13Nj1UWTqjutKanSZVRV4XnvKAAFjcn45AvDTi60K9Zxa6xy/2bfuTee28HN0dDQ9e/Zk9uzZ1KhRo1DPL0RpVNBDHZdT0vn7fDJ/xyXz9/kkjp1P5mhcEnGJ127cxtkh91HPXiQy83FHyl8KxzMhHPeEAzilmHe8tLIjvWIdMnyf5HKVxpj8glG+DQhwdqWWvR197RQ1P/gl18c++MnjBfmn3yavzrIEqypwI3Ts2JGePXvy+uuvU6lSJRISEvJ1v8uXL9OlSxc+//xz2rRpU8wphbAteR3q+PPExeyyTsou7GQuJN8sajcne2r6utOmpje1fD2oXdmdWr4eVPVypcb7awFNY3WclnaRNLI7QWN1gmp28bAl+wEq1YIabcEvGKo2RVVphLNTOUrjAU6bKnBvd6dc/1cvrAYNGvDBBx/Qtm1b7O3tb3tzMi9Tp07l2LFjfPrpp3z66acAbNiwAV9f30JnEaIs6DftTwDcnR2o6etO+zo+1K7sQc3K7tTydcevvCt2dne8KjaZIHoXYx3m0Nn+L6qqiwCcNvmwX9dgTsajvP/8ALivMbiUL3Cm4uiW4nzc61RuhweKQ0hIiL5zQYfIyEjq1atXYhmskXwPRGmT16GD2cOaU6uyO1U8XfI+VmzKgtM74dAKiFwFSbGk48CWrCB+yWrOJlMTLuEJlNxQYqMopfZorUPu3G5Te+BCCOsXczk1z+sfqX3XymA3ZWXCqe03S/tqPDi4QK1OUL8HTrUeo5OLJ6W3qgtGClwIYTErws7yz+XhBbtTVgac3JJd2qshNQEc3aD241C/O9TsBM7uxRPYxkmBCyGK7EpKBv9cEc7K/TE0rV6Bkxeucikl467b3Tj2m3kNjm8yl/aRtZB2GZw8oM4T5tKu0RGc3Er4X2F77lngSqnpQFfgvNa6Yfa2isBPQAAQBfTRWl8qvphCCGu149gF3vx5P+eTrvFmp9qMalcDB/schvxlpMKx32DJC3B0HVxLBOfyUPdJc2k/0B4cXUr+H2DD8rMHPhOYCsy+ZdsY4Det9RdKqTHZl9+1fDwhhLVKy8hi4voj/LD9JA94l2PpqNY0rlbh9htlXoMjv5j3tI+uh4yr4OoF9btB/R7meUMcLDMioyy6Z4FrrbcqpQLu2NwdaJf99SxgM1LgQpQZh88l8trCMA6fS2JQy+q8/2Q93JxuqZPMdAibC1u/NE+r6uYNQb3Ne9oBD+c4b4gouMIu6FBZax0LkP0518HPSqkRSqlQpVRofHx8IZ+ueE2ZMoV69erh5eXFF198AcDy5cs5dOjQjdu8/fbb1K1bl6CgIHr27Mnly5cB2Lx5M127dgVg5cqVN+4vRGlkMmn+t/UE3b75gwvJ6cwY2oxxPRrdLO+sDNgzC755EFa/Dp73wYCf4c0j8NTXUKODlLcFFfuKPFrraVrrEK11iI9PHsOHDPTdd9+xdu1aLl26xJgxY4C7C7xTp06Eh4dz4MABateuzeeff37X43Tr1u3G/YUobWIupzLwh118tjaSdnV8WP/aw7Svm73vlpUJ++aai3vVK1DOGwYugeEbofZjYC/jJYpDYb+rcUqp+7TWsUqp+4DzlgxVkkaOHMmJEyfo1q0bw4YN4/jx4wwYMICVK1eyZcsWxo0bx5IlS3jsscdu3Kdly5Y35gW/1cyZMwkNDWXq1KkMHToUT09PQkNDb5uSVghbtCLsLGOXh2MyacY/E0TvEH/zSThZmXDwZ9g6HhJOmM+EfHIC1Hrs5gxPotgUtsBXAkOAL7I/r7BIml/GwLmDFnmoG6o0gs65H9b4/vvvWbduHZs2bWL16tUAtG7dmm7duuW4Kg/A9OnT6du37z2fuiBT0gphja6kZDB2RTir9sfw4P1efNWnCdUruZnPkjy4BLb8By4eM/+d9VsAdTpLcZeg/AwjXID5DUtvpVQ08BHm4l6klBoOnAZ6F2dIa/LZZ5/h4ODAwIED73nb/E5JK4Q1uj48MP7W4YEKOLjYXNwXjoJvA+g7F+p0ATurWCO9TMnPKJT+uVzV0cJZ8txTtgazZs1i9erV/Pbbb/ma7zc/U9IKYbTcpn4FeMCnHEtfak2QnydEroTNX0B8JPjUg96zoF43KW4DyTsLufDw8CApKenG5XXr1vGf//yHLVu24OYmZ4iJ0iOv5b3WjH4I1xO/wP99AXHh4F0bek2H+j2luK2A/ARy0a9fPyZMmEBwcDDHjx9n9OjRJCUl0alTJ5o0acLIkSONjihEMdI8arcH1xnt4KdBkJkGT/8AL/0JDZ+R8rYSMp2sFZDvgTDS7VO/atrbhfG6w2KC7E6CVyC0GwMNe8lQQAPJdLJCiLuYTDd34B6x288bDotpYnec0yYf3sp4kYmj/y3FbcXkJyNEGWUyad5fdhBX0vjEYRZ9HLYQrb15J+MFlmY9TCYOTJTytmry0xGiDMoyacYsOcCBvTtY7fwNgcQwJbMH32Q+TUZ2LVhq2S9RfKTAhShjskyat38Ow+XAHNa4zsXerQLq6RW88kBbXjE6nCgQKXAhypAsk2bswu10iPyUro67ILAj9Pw/cLfOeYpE3qTAhSgjMrNMTJ61kJeiPsTPIQE6fgKtX5EhgTZMfnIFNHnyZFJSUoyOIUSBZGRmsvK/7/HqqdGUd3XAfth6eOg1KW8bZ1s/vSpVzBPl3PlRpUqJRZACF7YmI/E8RyZ15ukL3xPt2xbP13ZCtWZGxxIWYFsFntuEUEWcKGrSpEk0bNiQhg0bMnnyZKKioqhbty5DhgwhKCiIXr16kZKSwpQpU4iJiaF9+/a0b9++SM8pREnIOLaV5K9bUuvqPv6o8x6BLy01L2kmSgXrOgb+2msQFla4+7Zrl/P2Jk1g8uRc77Znzx5mzJjBrl270FrTokUL2rZty5EjR/jxxx9p06YNw4YN47vvvuOtt95i0qRJbNq0CW9v78LlFKIkmLLI3PQ59tsmkmCqwpbWc+nxxBNGpxIWZlt74MVg+/bt9OzZk3LlyuHu7s7TTz/Ntm3bqFatGm3atAFg0KBBbN++3eCkQuRTYgymmV1x2DaBpVkPs6vTUinvUsq69sDz2FMG8p4ofvPmQj1lbnPB3DldbH6mjxXCcEfXo5eNJD0thffSR/Fgt1EManm/0alEMSnze+CPPPIIy5cvJyUlhatXr7Js2TIefvhhTp8+zc6dOwFYsGABDz30EHD3NLNCWIXMdFj/Aczvw+nMCjyZNo7mPV6S8i7lbKvAK1cu2PZ8aNq0KUOHDqV58+a0aNGC559/Hi8vL+rVq8esWbMICgoiISGBUaNGATBixAg6d+4sb2IK65FwEqY/DjunssG9O48lf8jIp5+gf/PqRicTxUymk81BVFQUXbt2JTw8vESezxq/B8JGhC+BVa+hleIrt1f5JrYuE3o1pteD/kYnExYk08kKUZqkp8C6MbB3FllVm/FqxmjWnnFkUp/G9AyW8i4rpMBzEBAQUGJ730IU2PnD8PNQiI8kvdWrDDnRiV1nEvmqbxO6N6lqdDpRgqyiwLXWZXaUhyx2LArk9C6Y+ww4upDS92cGb3Zn35nLfN0vmKca+xmdTpQww9/EdHFx4eLFi2WyyLTWXLx4ERcXF6OjCBsw/NMpJP/YjeNp7rS8+CH1Z2UQeuoSbk72Ut5llOF74P7+/kRHRxMfH290FEO4uLjg7y/HLMU9RP3BlMxxnNMV6Z8+lvPcPB0+KS3TwGDCSIYXuKOjI4GBgUbHEMJ6RW2Heb2J1ZXon/4B8chcJsLM8EMoQog8nNwK83pDher0Tx8r5S1uIwUuhLU6sRnm9YEK98OQVcRTwehEwspIgQthjY7/DvP7QsUHYMgq5oSnGp1IWCEpcCGszbFfYX4/qFQThqxk01nNRyvCcbLPeaitrB5fdhn+JqYQ4hZ//woLB4BPbXh2BZGJjoyet4O6VTz5eWQryjnLn6y4SfbAhbAWRzfAwv7gUwcGryQuqxzDZu7Gw8WR6UObSXmLu0iBC2ENjqyDnwaCbz0YvIIUB0+Gz9rNldQMfhwaQpXycrKXuJsUuBBGO7wWfhoElRvA4BVkuXjxyoIwDsUkMnVAMA38yhudUFgpKXAhjBS5GhYNhiqN4Nnl4OrFZ2si+TUyjo+eakCHuoWf616UflLgQhjl0Er4eQjc1xgGLwfXCszeGcX0P07yXJsAhrQOMDqhsHJS4EIYIWK5eUpYv6bw7DJwKc+mw+f5eGUEj9bzZWyX+kYnFDZAClyIkha+FBYPA/8QGLQEXDyJiLnC6Pl7qXefJ1/3C8bermxOrywKRgpciJJ0cDEseR6qNb9R3ueupDF8ZiierjJcUBRMkQpcKfW6UipCKRWulFqglJKxTkLk5sDPsPQFqNYCBi4GZw+uXstk+KzdJKVl8OOQZlT2lD8hkX+FLnClVFXgFSBEa90QsAf6WSqYEKXK/p9g2Qio3hoG/gzO7mSZNK8s2EdkbCJTBzalvp+n0SmFjSnqIRQHwFUp5QC4ATFFjyREKRO2AJa9CPe3gYGLwNkdgE9XH+K3w+f5pFsD2tfxNTiksEWFLnCt9VlgInAaiAWuaK033Hk7pdQIpVSoUiq0rK66I8qwffNg+SgIfAQGLAKncgDM/OMkM3dEMfyhQJ5tFWBsRmGzinIIxQvoDgQCfkA5pdSgO2+ntZ6mtQ7RWof4+PgUPqkQtiZsAaz4BzzQDgb8BE5uAPwWGce/Vh+iU/3KvP9kPUMjCttWlEMojwIntdbxWusMYCnQ2jKxhLBxJ7fBytHmPe/+C8DRFYDws1d4ecE+GviV5+t+TWS4oCiSohT4aaClUspNKaWAjkCkZWIJYcMuHodFz5oXY+gz+0Z5x15JZfis3VRwdeTHISG4OclwQVE0RTkGvgtYDOwFDmY/1jQL5RLCNqVeMq+kgzIfNnE1L4OWfC2TYTNDuXotix+HNsNXhgsKCyjSLoDW+iPgIwtlEcK2ZWWYT4+/FAWDV5j3wIHMLBMvz9/L0bgkpg9tRr37ZLigsAx5DSeEpawbAyc28y+7UUz//jKw5rar3Z3taVtb3sgXliOn0gthCbumwe4foPXLTE95OMebJF/LKuFQorSTAheiqI79CuvehTpPwqOfGJ1GlCFS4EIURfwR+Pk58K0PT/8P7OyNTiTKEClwIQrr6kWY3wccnKH/whunyAtRUuRNTCEKIzPdPNY7MRaGroEK1QBYtPuMwcFEWSJ74EIUlNaw+nU49Qd0/xaqNQNg9s4o3llyAEf7nM+u9HZ3KsGQoiyQPXAhCmrHNxA2Fx55B4J6AzBt63H+vfYwj9arzLcDg3F2kGPhovhJgQtREIfXwsYPoX4PaPceWmu++f0YkzYepUuj+5jcrwmO9vLCVpQMKXAh8utcuHk5NL8m0OO/aKWYsP4I320+ztNNqzL+mSAcpLxFCZICFyI/ks/Dgn7gUh76LUA7uvKv1YeY8UcUA1pUZ1z3htjJzIKihEmBC3EvGWmwcACkXITnfsHkXoWxy8OZv+s0z7UJ4MOu9TFPyClEyZICFyIvWpsXZYjeDX3mkFk5iHcW72fp3rO81K4Gbz9eR8pbGEYKXIi8bJ0I4Yuhwz/JqNOV134KY82BWN7oVJuXO9SU8haGkgIXIjcRy2DTOAjqx7VWr/GPuXv5NTKO95+sy4hHahidTggpcCFydHYvLBsF1VqQ+sRXvDhnL1uPxvOv7g0YLIsQCyshBS7EnRJjYEF/KOfD1Z6zGD53P7tOJjD+mSD6NKtmdDohbpACF+JW6VfNwwXTk0ketJbBC0+wP/oKk/s2oXuTqkanE+I2UuBCXGcywbIX4dxBknrOYcCKJA6fS+TbAcE80fA+o9MJcRcpcCGu2/QZRK4iud2/6P27JycuJPF/zz5Ih7qVjU4mRI6kwIUA2P8TbJtISsOBdA8NIuZKCjOGNqNNTW+jkwmRKylwUWaFjNvIheR0gtXfLHT6lL2m+gwOfZwMUlj0YiuaB1Y0OqIQeZKZd0SZdSE5HR8u8b3TV5zTFRmV8SoZ2fs0Ut7CFsgeuCizHMnkO6ev8SCVwRljuIyH0ZGEKBApcFFmjXWYQzO7o7ycPpojurrRcYQoMDmEIsqmsPkMcdjItMwurDK1NjqNEIUie+CizNFn95G14lV2ZTXgP5n9jI4jRKFJgYsyJSPxPMkz+3LV5Mmb+lWyuHvtSll8WNgKKXBRZiSlpHL6297UTE9gTZMf2dmjm0wHK2yaHAMXZULslVTWfz2SBtfCCGvyMYN6dpfyFjZPClyUepGxiXw7ZTy9ri3nbK1BtOg52uhIQliEHEIRpdq2v+P5au4y5qlvSanSjKp9vzI6khAWIwUuSq1FoWf4YulOVrt8iZNrBewHzgMHeYNSlB5S4KLU0Vrz1a9/M/W3IyyrMI370i+i+q0FD5lVUJQuUuCiVEnPNDFm6QGW7j3LD/4baHxhN3SZBNWaGx1NCIuTAhelRmJaBiPn7GHH8YtMDY7h0cjZEDwIQoYZHU2IYiEFLkqFmMupPDdjN8fjk5n2hAeP7fgE/JrCk1+CDBcUpVSRhhEqpSoopRYrpQ4rpSKVUq0sFUyI/Ao/e4Ue3/5BzOVU5g6qx2MH3wAHZ+g7BxxdjI4nRLEp6h7418A6rXUvpZQT4GaBTELk26Yj5xk9by/lXR1ZPLIldba8BAknYMhKKO9vdDwhilWhC1wp5Qk8AgwF0FqnA+mWiSXEvS346zRjl4dTp7IHM55rRuWwb+Dwanj8cwh4yOh4QhS7ouyBPwDEAzOUUo2BPcCrWuurt95IKTUCGAFQvbrMuSwK5/ryZ3dytFcsGtkK99Ob4PfPoFFvaDnKgIRClLyiHAN3AJoC/9VaBwNXgTF33khrPU1rHaK1DvHx8SnC04myLKfyBsjI0rhfPQ1LhkPlhvDUFHnTUpQZRSnwaCBaa70r+/JizIUuRIlxJQ0WDgKU+U1LJ3kbRpQdhS5wrfU54IxSqk72po7AIYukEiJfNOMdp8H5Q9DrR6gYaHQgIUpUUUehvAzMyx6BcgJ4ruiRhLidyaRz3P68/Vqesv8TOn4ENR8t4VRCGK9IBa61DgNCLJRFiLtorfnX6rtf2LWyi+A9h/mszWrOkw+9bkAyIYwn84ELq/btpmPM3BGFq+PNX1U/LjDVcQrHtR9fOL0sb1qKMktOpRdWa8Ffp5m44Sg9g6vyZe/G2NkpyEiF6U9AgqLSCyvZ6l3T6JhCGEYKXFildeGxfLDsIO3q+DC+V5C5vLWGNW9CbBj0WwBS3qKMk0MowursPH6RVxaG0bhaBb4b2BRH++xf0x3fQNg8aPsu1H3S2JBCWAEpcGFVImKuMGJ2KNUrujF9SDPcnLJfJB5aARv/CfV7QNu7zhcTokySAhdW49TFqwyZvht3FwdmD2uOV7ns5c+iQ2HpCPBvDj2/Bzv5tRUCpMCFlTiflMbg6X+RaTIxZ3hz/Cq4mq+4FAUL+oFHFei/ABxdDc0phDWRNzGF4RLTMhg6fTfnE68x/4UW1PT1MF+Rehnm9YGsdBiwFsp5GxtUCCsjBS4MlZaRxYjZoRyNS+KHISEEV/cyX5GZDoueNc/t/ewy8KltbFAhrJAUuDBMlknz2sIw/jyRwOS+TWhXx9d8hdaw+nU4uRV6fA+BDxsbVAgrJcfAhSG01oxdHs66iHN82LU+PYKr3rxy25cQNtc8XLBJf+NCCmHlpMCFIb7aeJQFf53mpXY1GPbQLbMIHlwMv38KQX2h3XvGBRTCBkiBixI3a0cUU34/Rt+Qarz9eJ2bV5zaCctHQfXW0O0bmeNEiHuQAhclatX+GD5eFUGn+pX5rGdD1PWSvngcFg6A8tWg3zzzqvJCiDxJgYsSs+3veN5YFEaz+yvyTf9gHK6fIp+SAPN6m78e+DO4VTQupBA2REahiBKx/8xlXpyzhxo+7vxvSAgujvbmKzKvwcKBcOUMDFkFlWoYG1QIGyIFLord8fhknpu5m0ruTswe1pzyro7mK7SGFaPh9A545keo3tLYoELYGDmEIopVXGIag3/8CwXMHtYCX0+Xm1du/hwOLoIO/4RGvQzLKIStkj1wYVEh4zZyITn9ru0V3BwJ9C53c0PYAtjyHwgeBA+/WYIJhSg9ZA9cWFRO5Q1wOSXj5oWT22DlyxDYFrpOluGCQhSSFLgoWfFH4aeBUPEB6DMb7B2NTiSEzZICFyXn6gWY1wvsnczDBV0rGJ1ICJsmx8BFiXAmHRb0h+Q4GLoWvO43OpIQNk8KXFjMlVuPc99CYeJLx/9C9G7oMwv8HyzhZEKUTlLgwiK01ryzZH+O173tsIiu9rug06dQv3sJJxOi9JICFxYxe+cp1kfEMbZLPZ5/+IGbV+yZBatWQsgwaP2ycQGFKIXkTUxRZOFnr/DZmkg61PVl+K1Twx7/3bwwQ81HofMEGS4ohIVJgYsiSb6Wyej5e6lYzomJvRvfnF0w7hAsGgK+9aDXDLCXF3tCWJr8VYlC01rz/tKDnE5IYeGIVlQs52S+Iv4ozH0GHN1gwE/g4mlsUCFKKdkDF4W2KPQMK/fH8Ean2jQPzJ4CNnY/zOgMpgwYtATK+xsbUohSTApcFMqRc0l8tDKCh2p6M6pdTfPG07tg5lPg4ALPrYMqDY0NKUQpJwUuCiwl3Xzc293ZkUl9G2Nvp+D4JpjTA8p5w7B14F3T6JhClHpS4KLAPl4ZwbH4ZCb3bYKvhwtErob5fczzmwxbBxWqGR1RiDJBClwUyLJ90SwKjeYf7WryUC1v2P8TLBoMVYJg6Gpw9zU6ohBlhhS4yLcT8cl8sCycZgFevPZoLdj9AywbAQFtYPBycPUyOqIQZYoUuMiXtIwsRs/fh7ODHVP6B+Ow82tY8ybU7gwDfgZnD6MjClHmFLnAlVL2Sql9SqnVlggkrNO/10ZyKDaRL3sHcd/u8fDrx9CwF/SdA44u97y/EMLyLHEiz6tAJCBna5RSvxyMZfbOU7zw0P10ODERdv8PHhwKXSaBnb3R8YQos4q0B66U8ge6AD9YJo6wNmcSUnhnyQGC/T0Yc+0bc3m3ftm8FJqUtxCGKuoe+GTgHUAOgJZC6ZkmRi/YhyMZzCs/A/uDv0D7sfDIWzIxlRBWoNB74EqprsB5rfWee9xuhFIqVCkVGh8fX9inEwaYsP4wR8+cY73vd7gd/wWe+A+0fVvKWwgrUZRDKG2AbkqpKGAh0EEpNffOG2mtp2mtQ7TWIT4+PkV4OlGSfj8cx8JtEayrNBmf+J3Q/VtoOdLoWEKIWxS6wLXW72mt/bXWAUA/4Het9SCLJROGib2SyriftrKs3OdUT42EXtMhWH60QlgbmU5W3CYzy8THc3/lf6YPCbRLQPVfALU6GR1LCJEDixS41nozsNkSjyWMNXPNJsbGvU4VpxTsBi01n2UphLBKsgcubti7ewdP7RmGu6PG8bnVULWp0ZGEEHmQU+kFAAl//8kDa/pgb2eH3bC1Ut5C2ADZAy+jQsZt5EJyOgDNVSQ/Ok3ksnbnJfsPWVVVFmIQwhZIgZdR18v7cbvdfO04lWjtw8D094mjosHJhBD5JQVeRpUjlX86zKGfw2YOmAIZmv4uCTKdjRA2RQq8LDq1g3VOY/BTF886kK0AAAvvSURBVPgusxuTM58hHUejUwkhCkgKvCzJvAa/j4Md32DChz7pH7JH1zE6lRCikKTAy4pzB2HpCDh/iJRGz9J5d3tSkHm8hbBlUuClnSkL/vgaNv0bXL1IenoePX/1IIXkHG/u7e5UwgGFEIUlBV6aJZyAZSPhzC6o353kR8czYN4xziQksXBES1o+UMnohEKIIpACL420hj0zYf0HYOcAPaeRVu8Zhs3YTWRsItMGPyjlLUQpIAVe2iSdg5Uvw98bILAt9PiO9HJ+jJoTyu6oBCb3bUKHupWNTimEsAAp8NIkYjmsfh0yUsyLLzQfQRaKNxbuY9OReP7dsxHdm1Q1OqUQwkKkwEuD1Muw9m04uAj8gqHnNPCpjdaascsOsvpALO91rsuAFtWNTiqEsCApcFt3YjMsf8l86KTde/Dwm2DviNaaz385zIK/zvCP9jV4sW0No5MKISxMCtxWZaTCrx/Dru+hUi14fiNUffDG1d9tPs60rSd4tuX9vPWYnKwjRGkkBW6Lzu4xDw+8cBRajISOH4GT242rZ++MYsL6I/QMrson3RqgZBFiIUolKXBbkpUB276ELePBowo8uxxqtL/tJsv2RfPhiggerVeZ8b2CsLOT8haitJICtxWn/4R170HMXgjqC53Hg2uF226yIeIcb/18gNY1KjF1QDCO9rJehxClmRS4NTOZzOO5t38FZ/4EN2/oPQsa9Ljrpn8cu8Do+ftoVLU80waH4OJob0BgIURJkgK3RlkZEL7EPIfJ+UNQvpp5jzt4EDiVu+vm+05f4oXZoQR6l2Pmc81wd5YfqxBlgfylW5P0q7B3DuycClfOgG9985juhk+Dfc7zdR8+l8jQGbvx8XBmzvDmVHCTyaiEKCukwK1BSgL89T/zkMDUBKjeCrp8CbUegzxGkERduMqgH/7C1dGeucNb4Osp08MKUZZIgRvpSjTs/NY88VRGCtTuDA+9BtVb3vOusVdSGfjDLrJMJhaOaEW1im73vI8QonSRAjfC+cPm49sHF5kvN+oNrV+ByvXzdfeLydcY9MMuElMzmP9CS2r6ehRjWCGEtZICL0ln/jKPKDmyFhzdoNnz0OofUCH3OUpCxm28sYL8nRa92IpG/uWLK60QwspJgRc3reHvjebiPr0DXL2g7RhoPgLK3XtO7tzKG6B5YEVLJhVC2Bgp8OKSlQkRy8zFfT4CPP3hiS8g+Flwds/7vlWqQFwcAFG3bI4vV4Fmo+cWW2QhhG2RAre0xFg4tAL+/BYunwafutDjv9CwFzjkc4hfdnnfyefqZQsGFULYOinwotIaYsPgyDo4+gvE7jdv929uXlSh9hNgl/cp7SnpmYSducyeqEuEnrrErBKILYSwfVLghZGeAie3wNF1cHQ9JMUCiv3UZn1GX341NeXoMX84poFf8HZ3InRspxt3j0tMIzTqEqGnEthz6hIRMYlkmTQAdSrLiBIhRP5YdYHnNgLjzkIskcdNjM0u7HVwYgtkpoKTO9ToAHU6Q63H6P7prhzveiE5nTl/nmJPVAKhpy4RfSkVABdHO5pUq8CotjV4MMCLptW8KO/mCG/c+9/g7S5nXApR1ll1gec2AiOvkRkWe9zbDo2sM38N5iF/TQeTVfMxUqu2ItXkQFpGFteuZuX5nP9cHo6vhzMhAV481yaQkPu9qO/nWeAZA6O+6FKg2wshSi+rLvC8rDkQS5bWaK0xaU2WCUzZl2//WmPS5svmj9wf04VrfD9tKvWSdtDo6p9UNF3EhCLSvg7bHAaxSTcl4lJV0rabyNx6Ddic77zb3mmPv5dr/hZXqFw55zcyK8tq8kKIm2y2wP8xf69FHseXS3S030tHu720sYvANSadFFzZ79yUMNdWHPZoSaZLJZwd7ajhaE8DB3tcHO1wcbTH1dH8tbOjPS6O9ryyYF+uz1OgU93PnbPAv0wIUdrZbIFveP0R7JTCToGdUtjbKVROXytlvp0d2KUm4HA+nAmzl1Df7hQNVBR17KIBOGPyYWFWe54b+iJuAQ/RysGZVgXMlFeBCyGEpdlsgdfOa7SGyQQJJyDuIJy7/hEOSTEAjHWEWF2RSFN1VmS0MY8a0f6A4rmaHQudydvdKdc3R4UQwtIKXeBKqWrAbKAKYAKmaa2/tlQwyGchpqeYFz04d8Bc0ucOQlwEZFzNDmpvPpkm8GGo0ggqN+TR+Rc5dtU178cthKKMjBFCiIJSWufxrl5ed1TqPuA+rfVepZQHsAfoobU+lNt9QkJCdGhoaOGSag3JcbfsUWd/JBwHbTLfxrk8VGloLursssanLjjKPNlCCNullNqjtQ65c3uh98C11rFAbPbXSUqpSKAqkGuBF9qW8fDXNLgaf3NbhepQJQga9TIXdZVG5m35GeUhhBClgEWOgSulAoBg4K4zWZRSI4ARANWr5z5tap48qkDtx6Hy9T3rBnetyC6EEGVNoQ+h3HgApdyBLcBnWuuled22SIdQhBCijMrtEErBTgO8+0EdgSXAvHuVtxBCCMsqdIEr8ymFPwKRWutJloskhBAiP4qyB94GeBbooJQKy/540kK5hBBC3ENRRqFsB2TIhxBCGKRIx8CFEEIYRwpcCCFslBS4EELYKClwIYSwUUU+kadAT6ZUPHCqkHf3Bi5YME5xs6W8tpQVbCuvLWUF28prS1mhaHnv11r73LmxRAu8KJRSoTmdiWStbCmvLWUF28prS1nBtvLaUlYonrxyCEUIIWyUFLgQQtgoWyrwaUYHKCBbymtLWcG28tpSVrCtvLaUFYohr80cAxdCCHE7W9oDF0IIcQspcCGEsFE2UeBKqSeUUkeUUseUUmOMzpMbpVQ1pdQmpVSkUipCKfWq0ZnuRSllr5Tap5RabXSWe1FKVVBKLVZKHc7+HrcyOlNelFKvZ/8ehCulFiilrGZxVqXUdKXUeaVU+C3bKiqlNiql/s7+7GVkxlvlkndC9u/CAaXUMqWUVSzTlVPWW657SymllVLelnguqy9wpZQ98C3QGagP9FdK1Tc2Va4ygTe11vWAlsA/rDjrda8CkUaHyKevgXVa67pAY6w4t1KqKvAKEKK1bgjYA/2MTXWbmcATd2wbA/ymta4F/JZ92VrM5O68G4GGWusg4CjwXkmHysVM7s6KUqoa0Ak4baknsvoCB5oDx7TWJ7TW6cBCoLvBmXKktY7VWu/N/joJc8FUNTZV7pRS/kAX4Aejs9yLUsoTeATzIiJordO11peNTXVPDoCrUsoBcANiDM5zg9Z6K5Bwx+buwKzsr2cBPUo0VB5yyqu13qC1zsy++CfgX+LBcpDL9xbgK+AdwGIjR2yhwKsCZ265HI0Vl+J1eS30bEUmY/6FMhkdJB8eAOKBGdmHfH5QSpUzOlRutNZngYmY97ZigSta6w3GprqnylrrWDDvjAC+BucpiGHAL0aHyI1SqhtwVmu935KPawsFntOiEVY99jF7oeclwGta60Sj8+REKdUVOK+13mN0lnxyAJoC/9VaBwNXsa6X+LfJPn7cHQgE/IBySqlBxqYqnZRSH2A+fDnP6Cw5UUq5AR8AH1r6sW2hwKOBardc9seKXoreyYYWem4DdFNKRWE+LNVBKTXX2Eh5igaitdbXX9Esxlzo1upR4KTWOl5rnQEsBVobnOle4pRS9wFkfz5vcJ57UkoNAboCA7X1ntRSA/N/5Puz/978gb1KqSpFfWBbKPDdQC2lVKBSygnzG0ErDc6UI1ta6Flr/Z7W2l9rHYD5e/q71tpq9xC11ueAM0qpOtmbOgKHDIx0L6eBlkopt+zfi45Y8Zuu2VYCQ7K/HgKsMDDLPSmlngDeBbpprVOMzpMbrfVBrbWv1jog++8tGmia/TtdJFZf4NlvUowG1mP+A1iktY4wNlWuZKHn4vUyME8pdQBoAvzb4Dy5yn6lsBjYCxzE/LdmNad+K6UWADuBOkqpaKXUcOALoJNS6m/MoyW+MDLjrXLJOxXwADZm/619b2jIbLlkLZ7nst5XHUIIIfJi9XvgQgghciYFLoQQNkoKXAghbJQUuBBC2CgpcCGEsFFS4EIIYaOkwIUQwkb9P76gklxrCUzIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "probl_maxent = cont.AnalyticContinuationProblem(im_axis=wn, re_axis=w, im_data=siw_cont,\n", " kernel_mode='freq_fermionic', beta=beta)\n", "sol_maxent = probl_maxent.solve(method='maxent_svd', optimizer='newton', alpha_determination='chi2kink',\n", " model=model, stdev=err_cont, \n", " preblur=True, blur_width=0.16,\n", " alpha_start=1e14, alpha_end=1e0, alpha_div=10., fit_position=2.,\n", " interactive=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can plot the resulting spectral function. Here it is extremely important to look also at the backtransform (middle panel) and the difference of data and backtransform (right panel). The range between the error bars is shaded. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAEYCAYAAADPrtzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebwcVZ33/z5V1d13SwghCSRADCCbCyoGQQWSOOOouDDII+Iy6vwcEUZH5/c4IHFG0hd04IHZVARkEJQRxKDDohP1UUxAEDQkbIEkZGPJepOb3ORuvVTVef44VdXVfbv79l27773f9+vVr+6uOlV9qvsu/Tmf76K01giCIAiCIAiCIAiCUF+sek9AEARBEARBEARBEAQR6IIgCIIgCIIgCILQEIhAFwRBEARBEARBEIQGQAS6IAiCIAiCIAiCIDQAItAFQRAEQRAEQRAEoQEQgS4IgiAIgiAIgiAIDUBdBLpS6nalVIdSal2VMYuVUk8rpZ5XSj08nvMTBEEQBEEQBEEQhPFG1aMPulLqXKAHuFNr/YYy+2cAfwDeq7V+RSk1R2vdMd7zFARBEARBEARBEITxoi4Outb6EWB/lSEfB/5ba/1KMF7EuSAIgiAIgiAIgjCpceo9gQqcBCSUUquAacC3tNZ3lhuolLoEuASgtbX1raeccsq4TVIQhInJmjVr9mmtZ9d7Ho3IrFmz9IIFC+o9DUEQGhz5O1oZ+TsqCEItVPo72qgC3QHeCvwZ0Aw8rpR6Qmv9YulArfWtwK0ACxcu1E8++eS4TlQQhImHUurles+hUVmwYAHyd1QQhMGQv6OVkb+jgiDUQqW/o40q0LcD+7TWvUCvUuoR4E3AAIEuCIIgCIIgCIIgCJOBRm2z9gBwjlLKUUq1AGcC6+s8J0EQBEEQBEEQBEEYM+rioCulfgwsBmYppbYDy4AEgNb6Fq31eqXUr4BnAR+4TWtdsSWbIAiCIAiCIAiCIEx06iLQtdYfq2HMDcAN4zAdQRAEQRAEQRAEQag7jRriLgiCIAyCUuq9SqmNSqnNSqkry+xXSqlvB/ufVUqdXo95CoIgCIIgCLUhAl0QBGECopSyge8C7wNeB3xMKfW6kmHvA04MbpcAN4/rJAVBEARBEIQh0ahV3AVBEITqvA3YrLXeCqCUugc4H3ghNuZ84E6ttQaeUErNUErN1VrvGv/pCoKQTqdJp9PR4zirVq1i8eLF4z6nOKVzEgRBEMYfEehCXfF9jQZsS9V7KoIw0TgaeDX2fDum48VgY44GigS6UuoSjMPO/PnzR32igtAopNPpugrh9vb2so9DHn744fGcThGKxhLoSqn3At8CbEyx4OtK9qtg/3lAH/AZrfXaascqpT4CpIFTgbdprZ+MnW8p8FnAA76ktf51sP2twA+AZmAF8OVg0VMQBGFMEIEu1JXP/2gNL+3rZcWXzyFhS8aFIAyBcqtapV8aaxmD1vpW4FaAhQsXyhdPoa6MpUgMRfFoC2EFpICm4JbCtKZJBrfw8RLg8fZ2ksCHS/ZVe1xpXyK4ObFbYoiPw9vnR/UdGRmxFJ53YxYWVyulHtRaxyOE4ik8Z2JSeM4c5Nh1mLf+eyWv9zrgYuD1wDzgt0qpk7TWXnDeS4AnMAL9vcAvx+TCJzObfgsPfhG+9BQkmus9G0FoaESgC3WjsyfLb17YA8BTr3TxtuNm1nlGgjCh2A4cG3t+DLBzGGMEYUxYvHjxsJzqcs7yUEkBrUBLcB/e3hN73BLcmoZxS5V5PhbkgHxwX/o4B7jBtvA+A/TEtrlVHpc+XwMYUxqWLVtWbzd92Ck8wIJKx2qt1wfbSl/vfOAerXUW2KaU2gy8TSn1EjBda/14cNydwF8iAn3o7N8C3bsgc1AEuiAMggh0oW48t+Ng0WMR6IIwJFYDJyqljgN2YNyfj5eMeRD4YvAF9UzgoOSfCyNhKKLt4YcfrtmpbgKmB7fTY4+r3dooL8JbMHHNQ8HHiNvSWzb2uLPCmHLHZCkvqCuJ7XLj8kO8htGggSK3R5LCU8ux5V7viTLnygePS7cPQFKFBsF3g3uvvvMQhAmACHShbmzb1xs9fin2WBCEwdFau0qpLwK/xuiR27XWzyulLg3234IJxzwP2IzJ0fzres1XaFyGIrqrudsOcDgwM7i9P/a40u1wjNhO1PDaeeAgcAjoDm6HMAUVejE/4L2xW1+Fx/HnfUA/9RHDQlVGksJTU2rPaJ9LUoUGIRTmWgS6IAyGCHShbuw+lCFpW5x0VBsvdYpAF4ShorVegRHh8W23xB5r4AvjPS+hsRhMgFcT3c3AXGAOcCTwueB+Tsn9kRjBXQkfOADsD26dwCagi4LoHuyWrXoVE4Nly5ZF7/eyZcuK9jVCFfcGYiQpPMkajq319bYHj4dyLqEcoTAXB10QBkUEulA3dh/McORhKY6Z0cKWvT31no4gCMKEpZoIryTAp2HUxruD+3K3SqL7ALAH6MBU3fpd8HgfBREevx1kcAtzPFi2bFldhXD8c2qkiukNyLBTeJRSe2s4tpQHgbuVUv+GKRJ3IvAnrbWnlOpWSp0F/BH4FPCd0bnEKUbkoPv1nYcgTABEoAt1Y/fBDHOnNzN7WoontnXWezqCIAgThri4W7VqVdlcbxtjCb4LOAE4PriFjw8vc97dGMtwK/AIRt3sxIjvUJB3MLYh4aXO8mjSCKK4EebQ6IwkhafSsQBKqQswAns28D9Kqae11u8Jzr0cU4TOBb4QVHAHuIxCm7VfIgXihkcozMNcdEEQKiICXagbHd1ZXj9vOrOnpejqy5N1PVLOUEv7CIIgTG7KCbq4Kz4NU/L6dcHtVOAU4DUU53bngG0Y8f0E8BKmktb24LaT0RXeixYtGpZTLQJWgJGl8JQ7Nth+H3BfhWO+CXyzzPYngTcMZe5CGXwJcReEWhGBLtSNA305ZrYmmT3NNKjp7Mkxb4a03hAEYepSTYzbGPF9OvDvFAR5PEE2A2zEtMz6CUaMbwW2YNzwkQaXDsXdFqEtCEKEliJxglArItCFuuD7mkP9eQ5rTjC7zQj0ju6sCHRBEKYUpSI2LsZPA94K3IQR5adhYmzBVCB/AZP7/ULsto2hi3AR3YIgjDnioAtCzYhAF+pCd9bF1xiBHjjoe7snQ41eQRCE6sRFbijIpwFnAWngncHjtmDMQWAtRqivDW4vUrsQH0yAi+gWBGHMkSruglAzItCFunCo32Q6Htac4PCWJAAH+6UTrSAIk49yLnkSI8SvxVRRfzPGNfeAZzEVqR4D/oRxxQergF5NhIsAFwSh7kzBPuibO3qYN6OJlqTILWFoyE+MUBe6+owYn9GS5LDmRLAtV88pCYIgjBrlXPKTMSWnfwmcC7RgirL9AfgG8Cimj1N3DeePC/JVq1aJCBcEobGJqrhPDYHu+ZoPfudRvvIXJ/E35xxf7+kIEwwR6EJdOBhz0Kc1OSglDrogCBObUlGugDOAfwYuwFRWB5Mr/p/Ab4CHgZ5BzlvOHRdBLgjChGKKOeh5z6c/79GdkbZywtCpi0BXSt0OfADo0FpXbF2hlDoD0w3mo1rrn47X/ISxp6vfuOUzWhJYlmJ6U0IEuiAIE5JQLIdO+ZuBfwM+gqmwngdWAd8Gfo5paVYJEeOCIExKohz0qSFYfW0Skzx/sASlScBLj8FLv4fFV9Z7JpOGejnoPwBuBO6sNEApZQP/B/j1OM1JGEeiEPcgvH1GSyLaJgiC0OiUuuXzgH8APgW8EdNzfAWwFPgF0FXhPKWCXMS4IAiTkilWxd0NhLmnp4BAX/8grL1TBPooUheBrrV+RCm1YJBhfwf8DBMhKEwywpCftibzIzijOUGXOOiCIDQ4cbdcYQq8PYjJLbcx+eSXAsuBAxXOERflIsgFQZgSRH3Qh9oIcmLi+1PIQffy5iaMGg2Zg66UOhqTsvcuRKBPSvpyLpaC5oQNwPRmCXEXBKGxWbx4MQ8//DDTgC8DXwBOBPZgqrH/ENhc5jhxyYV6c/3117Nly5aibTt27GDLli289rWvZd68eUX7TjjhBK644orxnKIw2fGnVpE4dyoJdN8FPw9ag1L1ns2koCEFOvAfwFe11p4a5INWSl0CXAIwf/78cZiaMBr0Zj1akw7h5zujJcmr+/vqPCtBEISBhIJ63cMP044J7zoc0wZtGSbUq7QHhbjkwnhQTXjHmTFjBmvWrEEH4ba+7+MHgmnDhg00NTVh22bB3HEc7rvvvnGYvTCl0FOrSJw31QR6eG8n6juXSUKjCvSFwD2BeJsFnKeUcrXW95cO1FrfCtwKsHDhwinwWzA56M26tKTs6PkMcdAFQWgwQmF9U3s7XwVeBlqB/wauA1aXjBdRLowWoyG8i2nCcV6D684EjgKODO7nAHPIZGbjODfS2voQ9913H0uWLBmDqxKmNP7UKhI3JQW6lzMCfdX/gY4X4KIf1ndeE5iGFOha6+PCx0qpHwC/KCfOhYlLb86lNVX48TssEOhaawaLmhAEob5cf/31nHHGGUVf4leuXMnq1asnTVhsOp3mhvZ2/jewBWgG7sYI8/UlY0NhLqJcqIW4+H766aeZPXs2QLStr68PrTW7d+8eRHgngCOx7dPxvFkURHd4H398GG5ZXbQf6AD24rouX/rSl0ScC2ODnlpF4rypVCQuzD/3ckArdDwPu5+r65QmOvVqs/ZjYDEwSym1HRMlmADQWt9SjzkJ40tv1qU1Wfjxm9bk4Gvoy3lFwl0QhMbjjDPO4KKLLmL58uUsWbKElStXRs8nOul0GuX77LzmGjYDczGO+VLgxdg4ccuFctTifMdd78qO9xE4zmm47hzg6Aq3WQB4A/TOAUxlhN3A08F9+Hw3Su1F653AXkwTQEMqleLb336YJUuWiEgXRh9/ahWJiwS6Nw4CPZ8x72uyZfjn6NwC3zkdPnoXnPqBoR0bOehhqLs3ZSIlxop6VXH/2BDGfmYMpyLUid6cR0uyEOIeVnPvyboi0AWhwVmyZAnLly/nQx96gDPPzPPMM5+IxPpEJp1Oc397O7cCbwMeBS4EHo+NEbd8ajOYAB885FxhXO+34XnzgGMYKLznAU0ljrePcbp3YJIt/gDsJC6+lepA691Atuo1aA2JRIJ8viDOwxx013W54IILJMxdGH2mmIM+rm3W/ucr0LsXPjGCRfIda8398/89AoEeVGPxvSnzOY8VooSEutCbdTlqelP0vC0Q5d0ZlyOn12tWgiDUypIlSzj66CN56CGPr3/9sgn9ZT6dTpPM5Wi79lqeBDqBjwM/Lhm3aNEiEeaTnJEL8ASOczyuOw94TXCbH3t8LJAqcb37MMJ7B2Y5aEfRTaldaL0DqO5IFYR3+f2WZWFZVvT8rLPOoqurq2wV99WrV0/o32mhAYmquE8NZzV00MN2a/R2QvPhEPsdHDW6dxqBPhLCz8UahjQsFehaHPSRIgJdqAt9OY+WVHGIOxgHXRCExmflypVs29bFzJnncPPNN0/YsNh0Os3v2tu5E1iAqTh6JcU9zMU1n1xUE+G1OOCOMx/XnQ+cELstwAjwo3Dd+BdwH+N0v4IpK/jT4PHLwCsotROt91ed73CFdxxppSbUnSlaxd31tRHnNxwP514O7/qn0X+x0XCsw89lOAI9zEH3JcR9tBCBLtSF3qxLW6yKe1vKtGXoycgvtCA0OmHO+eLFz/Lii7O4/fblRTnpE4F0Oo3teaS+8Q1WAVuBszGt00JEmE9sKhVj6+zsZM2aNXgxGzsuwh2nFdc9mmIBHt6Ow3WbY6/iYsT2NuCXweNQfL+K1q8Qz/MupVr061QX3kqp9wLfAmzgNq31dSX7VbD/PEwYwme01murHauUmgn8BLOi8hJwkdb6gFLqE8DlsdOfBpyutX5aKbUKU46iP9j3F1rrjlG/4MlOXLxNAYqKxGUPmY3P/mRsBLr2Ry6Iw+PVMBx+cdBHHRHoQl3ozbq0xIrEhSHuPVlptSYIjc7q1atZvnw5d989l+eeK+SkT5Sw2HQ6zR3t7fwUOAO4Dfh7oDc2ZtmyZSLMJxDlXHHbtrnjjjvKFmOzLBvfnwOcApwcuz8Z110AxL+k9mBq+W8A/id4vBWltqH1S1QKPa/mfIfi2/d9LMti4cKFkfju6+ujpaWFc889t+iYySK8a0EpZQPfBd4NbAdWK6Ue1Fq/EBv2PuDE4HYmcDNw5iDHXgk8pLW+Til1ZfD8q1rru4C7gtd+I/CA1vrp2Gt9Qmv95Bhe8uTHn2IOuo4ViQtd6WzP2LyY7xVc7JGcA8Cyq48re2wo0EMnXXLQR4oIdGHc8X1NX96jNVYkLgxx7xYHXRAanlAk/OxnkAsWzCdKiHs6nebR9nbWYFqHfBi4L7ZfXPPGplJ4euiKl4amO04LrnscRoAXxLjvnwzEC570AhuBPwL/BWwOBPgmTHG2gVQS4IM535PZ9R5F3gZs1lpvBVBK3QOcD8QF+vnAndp86E8opWYopeZi3PFKx56P6SIE8ENgFfDVktf+GANLUAgjJSoSN1WquJvr9LQuCNhs99i8mPZHIcQ9+FxGlIMeF+jyfX4kiEAXxp3+vIfWFFVrLzjo8gstCBOFZLIg0CcCixctYuEjj/BrTC/zC4DNsf3imjcOQxXiJjf8RFz3FOANwBuBN+C6JxN0cQ14BeOE/xDYiFIvovV6TEG24njz4QhwEd+jxtHAq7Hn2zEu+WBjjq6wPTz2SK31LgCt9S6l1Jwyr/1RjJCPc4dSygN+BnxD64HJCUqpS4BLAObPn1/5yqYqU6xInOvFisSF4tkfoyjR0Qgpj0Lch+GgF/VBD+YzUkd/iiMCXRh3enPmj0C8SFwo1iUHXRAmDskkZKt3dGoY3rVoERc98gh/CywH/j8KIe3imtefUkF+8sknc9ddd5ENfsDiIeqOMxvXfQMmTTgU46/HddtiZ9wKrAMeBNah1Ea03oBJVS5QEOEFvSUCvCFQZbaViuJKY2o5tvyLKnUm0Ke1Xhfb/Amt9Q6l1DSMQP8r4M4BL6D1rZg6kyxcuHAcemtNMKZakTgdKxI31tfseyMX/yMKcS9ZgPA9c81agyr36ygMhgh0YdzpzZpf5HiRuKRjkXIscdAFYQKRShkHvdH/B7/nnHP48qOPcj5wHfA1Ct/WxTUffwbLFw/RWuN5RwBvAU6Pbq57fOzIPRghfltw/xxKbUDrQ0XnL/U7lVJorSMhXq3lmAjwurAd05Mu5BhMOfxaxiSrHLtHKTU3cM/nMjB/4WJKwtu16XGH1rpbKXU3Jvx+gEAXBiEScVNEoIdt1uIh7mPFaDjoeiQCPXTQ88Xn8j2wRWoOB3nXhHGnNxDh8SJxYPLQu0WgC8KEIZk09/l84XGjcd7ZZ3PVY4/xduALwE3B9kWLFrF48WIR52NMLWK8kC8+F9c9HVO6LxTkR8eO3IRpVfY9YC1KrUPr3QNes+CK58sWY5s1axbz5s1j586ddHR08OY3v1lEeOOxGjhRKXUcJv/gYuDjJWMeBL4Y5JifCRwMhPfeKsc+CHwas1b3aeCB8GRKKQv4CHBubJsDzNBa71NKJYAPAL8d7YudEtTioD/3U+jcDIuvHJ85jSFRmzVveAL995v2ctUDz/PLL59DU2IQ0eyPQg76SELcS6u4RxX73WKB/vhN0DobTvvI8Oc5RRCBLow7fTnzR6QlWfxHoC3lSIi7IEwgUilzn8s1pkA/7+yz+afHHuMM4CJMbCoYcb5q1ar6TWwSU2uouine9nrgLIy2OgvXPSE4ysPkif8OI8SfxnTPGuiKh0IcBoamX3bZZUWt1EDc8ImC1tpVSn0R+DWmVdrtWuvnlVKXBvtvAVZgWqxtxuQu/HW1Y4NTXwcsV0p9FlOQIK4UzgW2h8XlAlLArwNxbmPE+X+OxTVPempx0Df8AnY+NakEujdMB/3qn7/Atn29vNTZyylHTa8+eDRyvsMaAcNx0L0SB71SvYGn/gtmzBeBXgMi0IVxJ5M3f5ybS1YE25ocCXEXhBqo1Mu3ZMyxmDDMowAfuFVr/a3RnEcoyhuxUNx5Z5/N1x97jIUYcX5/sF3E+egTF+U7d+5k5cqVeJ6H65q/50aUz8Ton7MxYvwtQFNwhh3AE8AtwBOBIC+0Iyot1lYuRzx0xeMsWLBAxPgERmu9AiPC49tuiT3WmMCYmo4NtncCf1bhmFWYFaP4tl7grUOculAOXYNA9/LDF5q7n4OZJ0CyZXjHjzKuX6ZIHJjrsxMVjiqQSpi/cdl8DVXvR6NqehTiPpwq7sGxA0Lc3YHjvAb8wtCAiEAXxp1QoJeG7IiDLgg1U7aXb8kYF/iK1nptUNxojVLqNyV9hEdEKNAbrVDcX5xzjojzMaQ2l/woYBFGlJ8LvC4Y3Q88CdyIEeN/Qut4wW0jyB3HQWuNihU3qCTExRUXhAlA6KpWC3H38sMTcPl+uOVsOOm98PGfDG9+o4zvx4rExQV6fxe0zR70+KRtBHrOq0Ggj2oVd6v6uLLH5kvuKyzGSHX3mhGBLow7Gdf8sWlKFP8RaEsl2NHVX48pCcJEY9BevkErobCdULdSaj0moXfUBHo8xL1ReNeiRXzh0Ud5JybxVMT5yBlMkAP4/jx8fwkFUR6Gqx8CHgXuRKnfo/VqoPAFrVy+OEAqleLqq69m48aN0VgR4oIwganFQfeH6aCH4nLrqqEfO0a4lYrEZWoT6CnHmFg5t0YHnWAhYDgh6lDcw3yolOagV3TQXRHoNSICXRh3Qgc9/OMTMq3JoScrv7iCUAO19PKNUEotwJTC/mOF/cPq39toIe6LFy3iw488woXA3wP3BttFnA+duCg/+eSTueeee8jlcrGw9RZ8/z3Au4Nb6JDvAx4BvhPcP4PJsCgOVa8lX9x1Xb73ve+N3UUKgjB++BVEW5zhhriH53YzQz92jIhy0P0Sgd5/oMIRxUQh7m4NgjkuiIct0EsKvA3p2FCghyLfLb4P8X0Jca8REejCuJOVEHdBGBSl1G8x+eOl/OMQz9OGqY/297q091TAcPv3hg56I4S4L168mNMfeYQvAf8KhMn2Is5rp5Io932f449/LRs2NAPvAf4CeDumm1UfRojfhqmf9TyhIA+pRYxLvrggTHKiKu5VHOHhhrg3YOu2YoFeEuJeAymn9hz0fd39zIJAEKcKO+79DLTMgvf/y+Av6Ab/yIfTs90vFegVisRJiHvNiEAXxp1MvkKIuxSJE4QIrfWfV9qnlBqsl284LoER53dprf97tOfYKA56Op3GevhhbgB+ClwebBdxPjjVRPlxx72ejRuPBj7Ehg0fAOYGR60F/g34DUo9jtbFqUmWZaGUQimF4zjYts2SJUui3HER44IwBamlirufNzetIVZ/YlCGIyrHmJE66MkgyjTsfFQN13VBMVD8Pn+fuT/nKzB97oDjiiccOujDEehhFfdaQtzFQa8FEejCuFMpxL0t5ZD3NFnXG7BPEIQiKvbyDVGmutb3gfVa638bi0k0QpG4dDrN99vbWQNsxPRZ0og4r0Y1UT5//pls3nwy8CE2bvxzoBmTR/4r4Oco9Ru03hOdq1xBN8kfFwRhALrGInHhvTOE3p0jLZA2Bng6JtDj1+zWVmspdND7coNfmx1GLVUS16tvgz/7evWTROK6hpz3UgY46JOjirvWmvf8xyNctvgELnjLMeP62iLQhXEn43pYChJ28epoW8r8OPZkXFJtItAFoQple/kqpeYBt2mtzwPeCfwV8JxS6unguK8F7YdGhXoXiUun01zb3s7DmIZdHwZ6EHFejuqi/Gw2b34TcBGbN4ddprZh2j3/HBPCbj7kWgW55I8LglBELQ66F68GPhSB3ngOulupD3qJaN2yt4cLvvsYK758DsccXmgRl4wE+uDXZlEmpNyLPe56pYYJZ8vOb1B8vyDqQye9koM+wULcs67Pi3t62LSnZ/DBo4wIdGHcyeR9mhJ2UfscgNZAoPdmPY5oq8fMBGFiUKmXr9Z6J3Be8PhRTNDbmFHvEPd0Os2M9nbOwojzjcCyZctIp9P1mVCDUV2UvyMmyt8RHLEGU+LgQUwueaEcwamnnsrmzZvRWosgFwRh6FQSbXGKQqVbaz93IzroQXu0ASHuJYsJr+zv41DGZceB/mKBbg9FoAd/q/2Y+M11Fx7X4trXGuK+YQX8/Evw9+sg0VSyKFBSaG6CF4nrDdJu87W0uhtl6iLQlVK3Ax8AOrTWbyiz/xMUWgb1AJdprZ8ZxykKY0gm7w0oEAcxB13y0AVhQlDPInHpdJpH2tv5HaZe+H3jP4WGpJooX7DgdF588XTgY2zefHZwxFPAUuBelNqK1gNFuW3b7Ny5k+uuuy4S5SLIBUEYEqHwqzXEfSgMJyx7jPGCP6UDisSViFY/nqtehv784AI9DHHXXr6wKp+Nub75WHX7750LZ30B3vTRkgmX5I9XonMz9O6FbHcg0GOf1WBF4nwX/GH0Wa8T4eJITa3uRpl6Oeg/AG4E7qywfxuwSGt9QCn1Pkx14TPHaW7CGJPJ+zQ5A39BRaALwsSiXg56Op3m39vbeRbjmoeruVPVPa9eff1kNmyYD3yGF1/8IKbC73MYp/xelNociXKtRZQLgjBGRA76IFXcYegu6yg56Cue28Xtj27j3kvfPiDKc6h4ftxBryzQQ2GeLxHobnB8LTnoYYh73nULiQHZuIMeCHTfg13PwN71A09Sa4i7F44raakGhc+vUs/7CRbi3hu89zmv5uY2o0ZdBLrW+pGgL2+l/X+IPX0CGN/MfGFMybjlHfTWlNnWKwJdECYE9SoSl06nmd/ezjHAO4B+KHJ+pwqhMA9Fedi6bP78+axf7wCfZsOGTwJHYgr93wT8EKWeFVEuCML44tdQJM4fpoM+Sjnof3vXWvPyvsaxRyrQw/vqIe6Fau9+yXZzX0uIe+igZzPZ8gI9H4S4V4tQiMLTB3GLS3ude+VC3KsUiWvAaIdK9GannoM+FD4L/LLSTqXUJcAlYL6UCI1PNu+RKiPQpzWJgy4IE4l6FIlLp9M82d7OL4BvAH+KbZ9K7vl5553HggULuOeee1BKsWzZMr761TSuewHr1/8tJugsB7baEVsAACAASURBVPwCE7T2K8B8sRJRLgjCuFNLDvpwQ9xHOQc972lG2kwoctAHFIkrEejBYqlb4tKGx/dlay8Sl81lWfviXlKOxVleINBbZ8cc9CoRCrWGuIdOe6lQj5+/Wps19NDb6NWJMHphyuSg14pSaglGoJ9daYzW+lZMCDwLFy6cehbKBMQUiRsY4t4qIe6CMKEY7xD3dDrNDe3tvIAJ0r462D5VQtvjoewLFizglltu4YMf/CArVrzIV76iMdlhRwDrgS8DdwP7ouNFlAuCUDeGUsV9qCHucVHp+2CNLM855/k0MzKF7lbqg14hxL00Bz1y0IeQg57N5fi3lS8yvcnhrDMPmZ2tc2pz0N0qReK8PLzyOBx3bhmXvFwOepkicVoTFR71XbATg15XvQkddBHoMZRSpwG3Ae8LKhYLk4RM3qOpzNJkoYq7CHRBmAiMd5G4dDpNU3s7r8Gs2uaZGqHt5ULZtYZZsz7Bgw9+Angv5t24D7gFWBkdK6JcEISGIBTRNYW4DzUHPXbOfB+kRtYKaDQEWVHxt2pF4nT5HPTQQe+vIQfdUQWBnnMt+nNeIcS9bTbs2xScNHhfy4a4V8lBf6gd/vAd+NzKWK56uRz0XHGIfNF1e8XjJoBADx10CXEPUErNB/4b+Cut9Yv1no8wumRcLwpnj9OaFAddECYS4+mgp9Nplre38wxwO/BYbPtkdc9LhblSiosv/hS33daD7///9PWdBuwErsKsZ+8CRJQLgtCARK5qLUXiRpCDnuttCIFe5KDrygI9DG0fkIMe6PVBc9Bjx+VyWVwvRX+egkBvnQO7ng1OOswQ9x1PBS/QM1DIF+Wg54uPj3+OA9qxDaGNXp3oDau4TxUHXSn1Y2AxMEsptR1YBiQAtNa3YL5tHAHcFFRRdLXWC+sxV2H0Cfugl2JbipakTU9GBLogTATGS6Cn02na29tZgem7OdmrtpcT5v/rf32WH/wgya23/h1wNCbI/9PAjwlzy0899VRefvllEeWCIDQWWheKg1Vy0H0PyvXzroW4+Mv3lh3Sl3PJ5H1mtkZl1OjO5NHA9KZiNzfvlrrZGs/XJMt0IKpEmFteHOKuKjrolXLQ+wcT6LH3M5fLk/cS5py5oM1aPAc9ctDL/NN2qxSJy/eZe6epMC4U5qUh7pWiBYqE+8T4nt8/1Rx0rfXHBtn/N8DfjNN0hHGmUh90MGHuvTWE8wiCUH/Gq4p7Op3mhC1beN+PfsRXMFnVkzG0vZwwv/DCz/GDHxzO7bf/HTAd+C2mNMuvAVBK0dLSyqc+9SluueUWLr30UjzPE1EuCELjEK/cXamgW0w07u3qZnbJ7kzeY8Pubo6cnsL1NAf6cuzvzXH0jGa8XV2cEozb9Ooejkgdw+6DGTZ1dONrjecXRNYpc6cxf2YLh/rz/GnbfnwNM1sTHD+r4Og+9eoB9nRnmN6UYNfBfnqzHr7WnHTkNHqyLoe3JOjJunQcypJ0LI5oS9Kf8zjQl8exFNObHTbtMQ6252t2d/VwFKDtFAe6+/nDszs558TZwX7zmqXRo2FOel/O40Bvjq7+sMinJmFbdPbm0FpzWMLj+OCYbC5H1m0y/x+z3ehEK7v6Lebl+3Bdj4PdPRwBeG4e5WssS6G1ZsveXk7wsqaHevD5hP9jlVJ4uT7s4DjcLDbw3Kud9OU6OTbXzbzos81XjhYoDXHHfCaOpbCsQsG4TN4jFSyEVGt1d7A/z7SUU3Ss6/k49uj1Wd/bbb7clDro/TmP5uQIqwgOQkOGuAuTm0pF4sD0Qu+poWKlIAj1x7LAccbWQU+n01zT3s5aTAm0G2PbJ4t7Xk2Y33FHKMx/Cvwz8FR03Dve8Q7WrVuH53ncfffdXHrppbz00kusWLGiTlciCIJQhkq5yAF7u7Ps6tjHacHzF7Z3kpreievpSLh29eXwNbyws/jYnV0ZjtrfHQn0bbv2sjqzu+JUNuzqZsOu7qJt+3vz7OwqlLva3NETFQiLs+blAwA0Z/YAiv6mOQBsP9BfNG7XQejPG1GngT0HejkKyKsE+w71cqjfZcVzu9AannxpPwDPbj/Ipj3d7OvJ0dGd4dX9xrU+lMnzy3WVr8fK90YCff2OTnqzLXi+Zuv2XRxltdDRbzEPuP/JbbR0d3AesPdgN48/s8MENmjIuj4L8lkcYF93H5/61iNccPoxtKUckrbFe3q7aQNWvbCdkzsPcgyw50A3HVYvBw52RgK9r78f3Z+Ngtd3H+jhqed20ZfzOLY5w9uC7X/cspv9CYuufrOg8Zb5M0g5Ntv29bKjq5+kbeH5mjcdO4OdB/uZ1ZpCKfNzkvd8ErbFroMZmhIWx85sIef6ZPIeB/vznHTkNBK2RUvSZsveHo6e0UzO89nXk8NS0J1xcX3N9CYnaKdn8ZqZLezrybL7UAZfw/QmhwVHtLK5w0QhdPbkWPPyAU6Y3cpTr3ax+2CGN8w7jM7eLD1Zl9fNnc4xh7ewtyfL0TOaK35WQ0EEujDuZPMeqQr9K9pSjhSJE4QJRCo1tg56Op3mTc88w5vuv5+PAksnUVh7OWH+kY98lttvn8kdd3wJI8yXA9cA6wBwHIeFCxfy7LPP8vzzz7Ns2bIolH3BggXcdNNN9bocQRhVlFLvBb4F2MBtWuvrSvarYP95QB/wGa312mrHKqVmAj8BFgAvARdprQ8opRZg2h9sDE7/hNb60uCYt2J6FTYDK4Av68kYwjOWxF1V7eF6Pnt7sjy3/SA9WRN6nsx1RQJdeXm27i0fql4OFTu/4/UNa4rxXO/SiuqlnLkujcbm4YU3VhxT9COizfdaz0pEcw13h+5s3vNZ/dKB2BzMfWaQKu46HuKezeH6mrznY+d7yDuteFYqmEI/VhCOrt0c/bliV1gFrnbHwT5eONDN7E37eM/rjyLr+tieCZG3/Xx0jvA6VMwl7+3r55HndnBh8Hzb3kMcSOZ5+zNfI+EWFkX2HujmUFs+uG7Nn7YVrhvMggEUFkR2dWXKXnsm77NpT0/Rtme3Hyx6vrPCsfF02h0lCyw9GZedXZlokSbremzc3c3G3YVreG7HQToOZfiPhzbx1+9cwOvnHcapc6eJQBcmLhm3Woi75KALwkQimRw7Bz2dTvON9nY2YHzj5QDt7dG+iUrl4m823//+UmA2cC+mkVxBmH/uc5/jrrvuYv369VxzzTVs3LhRQtmFSYlSyga+C7wb2A6sVko9qLV+ITbsfcCJwe1M4GbgzEGOvRJ4SGt9nVLqyuB5WNZii9b6zWWmczNwCfAERqC/F/jlqF7wJCbn+mzZ2cWpwfPu/iz/s2Y7pRrYiuUyW3poOegqFkLvuP1VRlamL5ZeOZhAT+S70ap6KHU8lVv5Pr5y0MopWkyAglAvfckwN93X4Po+ToXWcToWfu37Lr7WuJ4m4fbgOm14thHojpeN3lerNMdf+9jBIoIOIhxSsXx7x+sPjsth++YfvhVch5s3zz3lYGm3KEJCBY+n9b5Mwj0UbR/w+g1KuHhS6efh1QNmMejpV7o4cc60UX1tEejCuOL5mrynq4a4V1rtEgSh8Rhrgf7mp5/mtQ88wPlMjqJw119/PY7jRML8qquWsXTpWm699cvAa4HfAZcDa4FiYX733XdHjrkIc2GS8zZgs9Z6K4BS6h7gfCAu0M8H7gzc7CeUUjOUUnMx7nilY8/HFCkG+CGwioJAH0Bwvula68eD53cCf4kI9JrYsreHdTsOkuspCPT+bG6AGAWMuAsfD1HAxY8dDwddab9oUaAc2vf4XfJ/8y33w6BdtLLwLadorhAT4iWv6ccceNfTxOvTbd3bw/YD/Zx70mz8WME17eXxfI0GHLfXOOh2EwC2l8UK3G67ZAHEirng4QJCKmakFRz0HFYg0FVwHS/s2M/7Ac9uxvLzKPzYucwYS+cjYW+ej70Rt7Orn617ezj7xNJqBrUTOvlhRf5pPdvobTkG3zJFBRNBvvtY9EkfvUx6QaiBrGt+8Ss56G1SJE4QJhRjFeKeTqdxlOINDzzAGuBBoL29fcIK9Ouvv57Pf/7zOI7Dtddey7Jly8hm38g//MM7yed/BPRjDME/A9biOA6XXXYZLS0tkTD/6Ec/GgnzK664or4XJAhjy9HAq7Hn24NttYypduyRWutdAMH9nNi445RSTymlHlZKnRN7je2DzAMApdQlSqknlVJP7t27d7Drm9Rk8h5rXznAH7fupzfrFYlZq0IV97hItCoUkkvkuyOxGKfIQfeG66DXLtAt7Q4qMm2d43hrNydZ21G+h69sNNYAB92PHPRSgR57XDKf5U++yq+e383Orv6iEHftudHcnSDE3Q1C3G0/UwhPL3l/rZh4Dh3wptiKgBWIbtvPRucIrz8frNC7gUDfub8QBh5+1pafx/YKXxTGw0G/ceVmVlTJ3a+FXKBZPF/j5Hs479ELec3OQo2XgkAf/YwXcdCFcSUTFM1oqtCqojXlSIi7IEwgxspBD3PPX3v//XyIieuelwtn//CHP8fll0/D9x8GOoC/Bu4EfHHMBcFQrnxz6bfgSmNqObaUXcB8rXVnkHN+v1Lq9UM5l9b6VuBWgIULF07JHPWD/XnWvnyA3YcyxPVmXJRWcp7jYe2VQtyXPHkpnYe9kTWvu7Joe3EO+tiHuBsH3bzmhl2HaEk5zJ/ZUjTGCURvMzmUdtHKQVvOgAWKMFfdGyDQC89L982Z1kRP5hCPbdzJX55cyHnWnhsJ+6bcATqTby520IP3NZstXuSIu9vhdZWrhm75BSc8EvnBOV27CUu7/PiJbXyxqfhcSrvFDvo4hrj7WmNVqQZfjbDyf5gyYOs8qXzXgHFj4aCLQBfGlbDYRTUHvbTVhCAIjUsqNfoCPex7/gym2/fPgZ9PwNzz0nD2r389zdKlm7njjiuBwzA1rNLAoUCYf16EuSAYtgPHxp4fA+yscUyyyrF7lFJztda7gvD1DgCtdRbIBo/XKKW2ACcFr3HMIPMQMCHFj27eN6CfN1AU9pzNlxdnRTnoFQRcU3YfTdl9A88fXwCo1MZtEDoOFRzeUkFc7vXC11yxbjezp6X4q7NeUzTG1qFAz0YOuq/sKC+79LVK24/HXfMB+foW/FfiWt65/3nu8AuOrg4KvVn4NOUPkEkeERWJs/2M6VMOA/qgxxdECkXszIvGIxZMiHvBhfe1jnqau1YTKbcbS8WjJYKQej+P7ccc9CHWGBgJnq+x7OEJ9DDE3dO6kHsf+9kMQ99L27CNBhLiLowrtQj0rOuPyWqUIAijTzI5+iHu6XSaH37yk5wG/CvGPddaTxhxXi6cPZc7gcsvfzuu+11M4be3oNRXSCT6JZRdEAayGjhRKXWcUioJXIzJdInzIPApZTgLOBiErVc79kHg08HjTwMPACilZgfF5VBKHY8pPLc1OF+3UuqsoGr8p8JjBOMcPru9i9+8sIdVG/eWFedQLKAP9vTTnxsY5q5qyEG3fLesAx93pUvzq2tlU0c3s9qSQC0OeiHEPed6ZSuthw56i8qC9tDKQiu76DohXiSu+DXjz0pD3LOuzzvt580TLxaa75pzH8EhLHwyqVmRg+54WbRr5mTryiHupVXmk/mDReNCofrC9v380/3r8N2Cg660ix3PQQ8WSwY66ONnxFX6mSxl7SsHorZqIVGROE9HCwzxn83w50QcdGHCE4W4VygS15oyP5K9WZcZLclxm5cgCEPj+uuv54wzziCZXBI56CtXrmT16tUjEpWhe/4rjE31YyA3gdzzUtf8H/9xGVde2UU+/wegG/gkcBeWZdHc3MLVV18diXhxzAXBoLV2lVJfBH6NaZV2u9b6eaXUpcH+WzAV1c8DNmParP11tWODU18HLFdKfRZ4BfhIsP1c4GqllAt4wKVa6/3BvssotFn7JVIgDoD+nMfKjR109Q0uiIty0DEmTDPFRo1dVMW9vICztFvkxhfOPzIHvbMny4G+PO884Qj29XTWkIPuRyIz5/lkywn0uIOuPRPiruwBIe6Fau0lIe5+5RD3vBur3B57r3TgZs9WJgy7PzWryEF3vfIC3Ynlh4eflQ6WCJL5QvX1eJG4l/YZ4e4GAj1vN2P72SKBHs9BjzOeIe6u7wPlTcE4P11jSk388wVvjLblYg66FUQSxN1/zw9b5EkOujDBybgDq0PGaQsEeo8IdEFoaM444wwuuugi5s3bRHPzDFauXMlFF13E8uXLR3TedDpN+sIL4bTTuJKJ0/c8nmseCu5/+qefcMUV5wJvxTSJ+zugg6amJr75zW/S3t7O1VdfzVVXXSXCXBBK0FqvwIjw+LZbYo818IVajw22d2IqMZZu/xnwswrnehJ4w1DmPtnxfc3vN+2tSZxDsYC2A4G+bsdBnnx5P595x3HBmFoc9PyAImul5x9OhfCw5/rJR03nsS2DC3QT4h4USXM1GXfgooHjxUPcXbSy8cu0WQtD2wdWcY+PGeigR6+TL/SL94PXnK2MeDYOeiDQvQz5IMTdKRXorjmHazejgu/pfuSgx9ujFRz0JMG44Jw5uxXHy2DFvP/wWks/k/EIcbeUuYbBPstq5GLvs/JCB71wLWGIe77M5z9SJMRdGFeiEHenUh/00EEvX+VTEITGYMmSJSxfvpz1659m8+ZXInG+ZMmSYZ8znU6jlOKm006jH1NtaSJUbo+75ldffTVf/erXuPLKbvr7H8WkrF6IUheTSBzgsssuI5lMcvXVVxeFs0souyAIE4FM3uPRzfvY11N78ZGBDrpm+4E+Nu0phBQXVXGvIOCULh/iXnT+YbizYYG4ma3GGHJrCnH38HyNp3X5EPfQQVemSJyv7CDEvVKRuOLjfa2jCoWlDno85zmZK4SgD3TQj8CNFYkjCHF3KH6PwtZ0OacNK3TQ9UAH3fLzkdhOWIG7HDjoGbsN28+RJP45Bm3WBlSNH3uBroLCcIN9lqVEn4evcX0d9YNX+XIOuuSgC5OE7CAh7m1NoYM+fuEvgiAMjyVLlrBgwVy2b+/gsssuG5E4ByPQ9aFD/G1bGz8BvtTgueflc82P5PLL30o+vwz4KfA6LOt+WlpauO6667j33nslz1wQhAnJtn29/PyZnWw/MLRK6aEodbUVOeier3mN2sUxO38FlFRxr5qDPlAMF/VQH4aD7gaiLBRjtVRxt/x85LBm8l4k7N6w6WbmdP4JJ7ieFrIo7aMtB38oIe4anKC4Wel04s5uvKq4DoTwbAIHPVYkzvEzaL+8g54IBHremYZFcQ56vCp+PMQ9ERSDC3PQs3YbAK0Uxqs6hrhbwerGUAX6nu4sWdeL8spbksZQLDjo45ODLgJdGFcGLxJntveIgy4IDc/KlSt5+eUXmT37WG6++WZWrlw5ovOl02kumT4denq4BeOeK6UaUqCXuuZLly7la19bS3//E8BbgL8CPkFLS4YbbrgB27ajcSLMBUGYaGzu6OHxLZ3DyrcNHe48DrYKBLqGj9m/4+3PfR2ooQ+61tg6X9VB95QzLPHn+catDvtalxPonq9xAyFmBSHuoXPq60Ie8qnbfsixe36Lo42gayaD8j00FtoqE+IeFokbEOKucSxrwD6tdbFAdwsOugqufbbqImM14zkteLZpw2Z72ah6u03xHBw3cNAT06Ic8vAl4wXkbC8TLTAkA4EenitrtwLQqgpV3yuHuI99kbiwtZo7RPH87Yc2cdcTr0RpBM2BQMcdGOIe/pz4euACy0gRgS6MK2EOeiWBHi8SJwhC4xLmnJ977hlMn34ky5cv56KLLhqRSE8vW8atb3kLzwB/xHwRaUQHPRTnoWvu+wkuv7yFbPZHwIvAm7Gsu2ltbeGaa66Jxkk4uyAIE5GOQxmefGn/4AMroAIRl8cJHHSN72tS5KOCZcUu+ECRHfXUrlIkzgt6cQ8Vz9M4tsIObNdybda+/+hWrnrw+ej1LN8tyj0Ov98qTAG50EGPQtwtOygSVzy/goNe/Hpa65iDXtjp+rqownsqFoIevg+zVReH7JnmWmI56GGbtQQu8Ub1oUDP2m3YqrhIXJhz7iuHhFvIdw8ddCf4bPst46BPiznoljYRD4riiytdRFF+HsosvIyEUKDXkoNeKq63dfZGiyAtSaNLIgc99rMZd+fX7zoURVGMBiLQhXFlsCru8SJxgiA0LqtXr2b58uUsWHAUmUwhJ3316tXDP+maNfDUUzRyqbS4OF+6dCnf+MYPyOX+L75/KXADcA4tLbvFNRcEYVLQ0Z3h95v2DRCQQyF0uHORQPfxtCaBZwSr1oP2QQ+FbXkHPRDoVmpYLbxcrbEtFYVFlxN1L3UaEet6vhHoMQcdChGi4b5EkIPeEqvi7pfNQTf3nT1Zbnt0a9SCztfgWANFZq6kIFlTrA1a6H7P4lAk0LWy8ZSD7WdRXuw9ji0UhCHu/VZbGQc9KALntJFwCzUDksrM0xngoBeHuJf9LEu2fezXp3Pmc8sGjBsJQwlxL/28j5/VGr3PzYnBQ9wB7vrjKzz1ShejhQh0YVwZrEhcJNAzItAFoZG54oorWLJkCU1N0B/8P16yZMmwBWg6nebbZ5xBBrg72NZI4e2l+eZLly7lqqtW0tX1ENnsa4ELsawraW1NimsuCMKk4KlXDvDbFzqKqobXQiq7n3c8/dXImQ1FaQ4narPm+9o4uRT3FYfilmshhZ7alau4Gwd9eCHutlIoZVz0aq7rnkNZE+KOJpsvzDmssRS662EfdNNmzVRx18pG+eVz0F/e38fWvb08u6Mr2u4EIffx6YSLAm4g4ZpiIe6JQCzPUN10W9Oi7bZ2ef3W7/PW/T+PtsWFpuP2olH0W82RQA/d4NBBd53WIgfdodhBz1hGoLfFHXTfK9v2rtxndMKO+wdsGwmWFYa4Dy7QS8e0JG2yQX/5MAfdKlPFvfTnZKi/J9WQNmvCuFJw0CXEXRAmA01NkMkMPm4w0v/4j3DTTdy7dy8HYVRDxUZKaW/zq666iqVLd5LL3Y8Jab+AlpZXueaaG6R1miAIk4Ite3tYv6u7prFH71nJrtln41sJAGZ1PcuCXSt48TUfY9/hb44qg+e1Q4vK4nqm+rmjCjnKoZBzLSOyf7VuF1nX5/w3Hx2NgfIOuhVz0IfTB92EuBvBW0mgT29yOJRx2XmwP1oQ8N1CfnZoQIX56YmgUnpCeTh+Dm1Z+MopE+Je/Dp9oYPuaxKRDZyjKbuPTGpW5OzmSOKQocmN9SkPxHITObpIRdt3HfF25nY+zox8R7RNxURywuvDtZtxtY0VCXSzL8xBzw/ioPcFReKmlTjodhkxvmPfQTa0HuKUo6aPemh7SCHEffDzu36hIFxfzsPXxELcSwR6UYh78bnD6IfRQBx0YVwJ/4CFlTJLSdgWKceiJycCXRAmAqFAH4meTqfTnJdMwt69/FewrVHc84H55haXX54il/sX4Oe0tr6L6dN3iWsuCMKkYWdXP3/aVlvO+bTel1m09kscs+ehaFsoYkKXNhS0+dBB900V99BBt3w3Gus6LSjfZXtXPzu6ivOZzbmq5aCnyrrvg+EFIe4AtlJlw6KnN5vFh10xge7lYwLd9SOxGQ9xB0i6PfjKqdpmLaQvMKhMFXfzXfmMvffygUc+hPLdSDj6gYRrjjnooVhOqTxZEtH2lW+7le6WY4teJ/4+OV4frtOChxWdw4856BqFazdH7diAaHElvM8oU4xuWqxInKXzZRdMXuo4wJ2Pv2zGDHVBRWum9b406LChhLiHDvr73nAUc6al8GOF+JqDHHTLC9qslYS4tyRtFp80Gyi06xsN6iLQlVK3K6U6lFLrKuxXSqlvK6U2K6WeVUqdPt5zFMaGjOuRtK0o9KQcbSlHQtwFYYLQ3Ay+D+4IfmXT6TQrLr6YTuBXwLIGaq+2ZcuWKI/8m9/8Dlo/gO9/AfgXFiz4B5qbXZYtWxaFvUuuuSAIE5nerMsTWztrXnQN+2Q3ZTujbaHrGgr1UFS7ymG66udd++7C9/woJNuKhbi7djO2n8f3dZGTHQo5RfkQd1/Z+MpBDafNWhDiDibvu5yDHlZSf2lvb8Gxj+V0Z/JetF35LomY05ryeqMQ99I2a6UF6SIHXesoB31O/1aSbjfT+l7hsJ7NACQDh77ZKzjokUAnT1Yn4qfFtVuKnseFseP2kbdb8bCwgoJuOpaD7llJPCtZ5KAnYg56XttkLdNvva2kinu5on2J2Gc41JSEOftX88FHPshJL99ddVyhinsNAj34bB3LwrZUWQfdjhz0wvW4nibpWCw5ZQ5Q+OxGg3o56D8A3ltl//uAE4PbJcDN4zAnYRzI5n1SFQrEhbSmHAlxF4QqKKVmKqV+o5TaFNwfXmWsrZR6Sin1i7GYS5P5nxzloQ+L7m544AF+AuShIYQ5GPf85JNPDhYL/pO+vl/T0/N24PPY9pUcOLCPpUuXFolzEeaCIExUuvpy/N8XdkfpiLVgB32yk7Fq4qHLaJXkjbvKiMYP77+NNv8gTpiD7hcLdEvn8XxdVF1blYj9OEqbNma+lRhmFXc/qpheKcQ9FHEd3YV/dkUOet4raitWKtB9ZeMHbdZsr5+3P7OUpuy+AQshvbnQQS9UcZ+e2wPAB35/Ppc+/wlARwK91SukIcRD3DMki86bd1qLnqtY+7SEW3DQy+Wg+1YS30pUzEF3sckGIfXxEHerQpG4MHIChu6gJ11zvQtfuLZqOkMk0Gtx0INQdcdWKGUWY8Jc/5YgJdfyyxSJ02ZhxwkKDE54ga61fgSoFjtzPnCnNjwBzFBKzR2f2QljSSbvVcw/D2lNOdIHXRCqcyXwkNb6ROCh4HklvgysH6uJhAJ9uHno6XSai6dPh/7+hioOFw9t/8IX/p3u7l+SyRwFnEcicQfXX389WuuiKu0izgVBmKh0Z/I8tL6D/tzQcoKdqgI9ENWEhc0Kru7h/v5iBz0McbebEWVpKgAAIABJREFUsfw8voZ4C+uC2C/fB11bjsnxHmmIu6XK9rT2fM0bjz6MOS2F77B+kYPuR3Oz/OIQ98hBx0Jpl8O6t3Dczl8w68DTA14rFHlaE/VBj+eOAyRjArclJtBD0ZwiT/8AB7256Ln2SkLc7WY8bUUiP3yXLT+LZyXwrGSR+2+H/dBxyZtseABaY0XilF/JQa/eUq8qsbdrRvemisOCt25Anng5QpfdCG2FJh7iHuagB1EhJSHuKcvjlJf+i+mON6oCvVGLxB0NvBp7vj3Ytqt0oFLqEozLzvz588dlcsLwMQK9+rrQtJRDT3bof2AFYQpxPrA4ePxDYBXw1dJBSqljgPcD3wT+91hMZDQEOi+8wO577+UPNEZxuLg4//Sn/5Vrr30PYAPvwraf5rrrro/yzTdu3CjiXBCECY3va/6wpXNYVahDgZ6Kt/sqDXH3QwfdiQTWTG9f+Rx0u9m4trrYQS+Eyw8UQZZ2IwfdyQ/9n1E8xN22yuegu74mYVvMaXMgWIvw3TygSDoWGdeLwuuV9qIicQCOzhmBbpkQ9/Ba7GAhIk5PttRB1xxWItBTsXMXvY7ysPFwlE9GJ4o89FIHXccK3DluL5nUEbhVHfRiRz4U3g4eORwyyjjoRQI9tvASpyjEfYgOelzQ24GrXXbcEPqgRyHutoWlFL5vKrJbCpJBzSy7jIPueppzWctbN9zAlfZ7+XXuK0O6lmo0qkAvl6Bc9h3WWt8K3AqwcOHC+n+zE6qSyfsVW6yFtKZs9vXkqo4RhCnOkVrrXQBa611KqTkVxv0HcAUwrcJ+YGQLnSMV6GQysGIF91Phj/w4ExfnF1/8bf71X98H9ACLOe64LJ2drVKlXRCEScX63YfoHOR7V1vvq+SdVrKpmUXbCw56QaCH4q3goAc52ypREOj+/lgV9zyWdvGx8O0kCa/PhLgHwulQf56mrBFIlRx037LRyhlemzVPY9cQ4u5YCmUV9nluDsdqojlhk817BQe9pEgcUMiR971YhEFuwKJ0d8YNFicgYVkcTjdJXSxEWyj/D9fBownzuv0lAr00Bz1egd446MfieRaO8gFd1Ae9nEAPnfZE5KCb/aFAz5EIFiPKOOiqsE0N8fOKL9BUi5YYUoh7EKoRhqqHReKSjhVFMRQWnWJt1rQmZ5nIhHfyNPdN9BD3GtgOxMsNHgPsrNNchFEk49YW4i456MJURyn1W6XUujK382s8/gNAh9Z6zWBjtda3aq0Xaq0Xzp49e0jzbA6i5oaTg55Op/lgczP09nJfsK2e4e1xcX7RRd/lxhs/hFL7gHdy1FFddHd3RwXsNm7cKK65IAgTnkOZPOt2HBx03Pseu5ALf7eoqFo7VBDoA3LQjQCyVUFcH+F3Rk6qCnKVteXgqYQpTObrqIDaT558lT+8aIJoFZVy0E2O93BD3B0rLtAHvobn+9i2isLIAbSbD0Sccd2jHHTfJUmxQNdBFXdLu0URBqUh7p6vo+/Ajq2YpwZmBLep8v9wbbzIXe/3S0LcSxx03DI56NrIQgsd5cbbfi4qEhcnFKpJ5ZLXNh4WnpWMBHpeJaLPtej6VCJaRDDnH9rnFXfcw4iFXQf7ueuPLxctrKiwirtXQ4h7rEicUioS6CnHLvxcVHDQU8Ei07HsnhIh7g8CX1RK3QOcCRwM3SJhYlNTiHuTQ7cIdGGKo7X+80r7lFJ7lFJzA/d8LtBRZtg7gQ8ppc4DmoDpSqkfaa0/OZrzHImDnk6n4ZVX6LrjDlZS3/D2Yuf8O9x44/uxrO34/iIOPzyH69pRQbhly5bhjqRsvSAIQoOwett+BtUwWpMIhPgRXc+y/cg/i3bZ7sAc9AEh7oFwPUJ3RWNm+Z3FIe7axVcJPLsJ28sYFzkQTv05D9cZJMTdsvGtxLCquHslIe7lHHTP1zhKgRUT6H7edCZSpvK3pQsRAQntFsUDa8sO2qz5RTn68X97x6ldtDs/YG3PjYBxdOcqUx3fx4p6lB9mmX+4We2QirnRDn4k0Pt0QeL9bO12jvQtTo5dj+8VO+h5uxU38G1t/Oj/sRUI9LDHfUh4raGD7vng2k20Bu3I8piCffu7e4uOyyYP57BYsbmiz0v7oKprhLiDHYr7zR09PL/zEIf68xzeahYSwoWP2orEBeH8tsJWipyvyXo+SduKahM4JT/TYBZtUqrwfFpmx6CvVSv1arP2Y+Bx4GSl1Hal1GeVUpcqpS4NhqwAtgKbgf8E/rYe8xRGn0zeH9xBT4qDLgiD8CDw6eDxp4EHSgdorZdqrY/RWi8ALgZ+N9riHEYY4u668OCD/AKoZ9WJuDj/+Me/xXe/+34saxe+v5jDD89h27ZUaxcEYdKxbsdB9hyqnMcbEnet45W8YTAHvbjy+kx9IBpzhN4ftQWztIvSLr7lkHdaSbjdpkhcILI8rVEl5yqan/ajEPLh9EF3fY0d9ByvJtBtW5GMRQH4bp6EY6GUWWAO56a0cdD7gsJpgMmRV06Rq2z7uaI2a2+1XuRc+zlS3aZHuGNbkUA/OO2EaFwo0LsphK27KmFC3JURkn0xB/2FnYfY1V/sydr5Hj780CKO2f0QjtuH6zTjRg66H6WchTnocQfdtVLRZ5fAJYeD72tcq4m2KMTdXOvabcX+QSZ1BIerQru2uCNue4N/kYgv0ITiPpM322YceIa3P/M10H608DGUEPeEpbCsMMTdI+kUBHq06FRSJK4ptkAyJ7d90NeqlXpVcf+Y1nqu1joRfIH8vtb6Fq31LcF+rbX+gtb6BK31G7XWT9ZjnsLok8l7pAbNQXfoy3nRyqkgCAO4Dni3UmoT8O7gOUqpeUqpFeM5keEK9HQ6zdmJBHR2RqsL9Qhvj4vzT37y3/nOd96PUvsCcZ4VcS4IwqTk5c5ent0+eGg7FIq8AUW9sAEc3/zxT+UPRc2zQ5fRihVNA/CUEYnb1Vxm6/2Rgx4WE/OVQ96ZRtLtCXLQzWv4vo6dq0KIuxqZgx6GMpfrgx7mhDuWwok76F6xg14IcfdI4HJITS+cw3ICB90tvD8lDnozZrHEy5r32LEVMzCPD7adGI2bZplx3bpQmd0LBHrkoPsFQe76ftFiAUBzdh9Nuf0c3r0RCz/qgw7GQfcjBz0fOOgxgW63DHTQtca1m6P+6FmS5v3wihdMMsmZzFCFyvNxwZvw+hiM/8fem4fbdZbl/59nDXs4U3IydW7p3EIrUFpGp4jIIIh+1agg+MUfMggqOJav0qbYKhZFEQVUEBAVjTjQClihBqWMpXNLmzZNpwzNnDPtaa31Pr8/3ndNe++TnKSnTU5c93XlOmevvYZ3r7XOzrrf+37up7h+Su7bjqCfsv9mztx+PUHcyq5hcjh90H0PQfpq0N19oanFPS5tV3IwROW/jSeCY9XiXuE4RTc2C7K4g+0FOd4ID7puhQr/G6Gqe4EXD1m+HXjFkOVfxia9LzqOtAZ9/fr1rDcGc/XVfEn1qNjbi+T853/+fbzvfa9AZMqR81ZFzitUqHBcYu9sl68/uHfB6xdtxQMKurO4exrbsLFgFK9PbfQcqf7gst9kWWcrZ/Y28d3Jt5hzwWKeiZ1SG9ILx/FND197GLWCjlHNel4Ps7hnBF2Cw04Fhz6LuwwS9LQNl+95hMUa9CSmFnh0o8Qp6LkjoKY9pr0JTkysgmzH55d6g9t2cvmxxj273BL05YSeR10iEjymx87M1psQS2RnKRB0r+Zq0O25nzMh33xoLytGayRGmdUyQQ8jS5LrPVvjHgcjxI6E1j1TqkGPw2ZJQe/WluO3XA26I+hGrYKeraMBTRMPhPZ16is5mQJBL9xbQdzGtVOfF8X10323Xe23TdUHX6MjUtB9T/A8QRV6iWGiEWbhgeFQi7uWWt7VkvLfxhPBESvoIjIqIgeXQitU6MNC+6BD3mqiQoUKxy6ekMX9hhv4hioHDr3moqPc5/xq/vAPfwCIMWYtk5MzFTmvUOEoQ0ReJiKbRGSziFw+5H0RkT91798pIpccalsRWSEiXxSRB9zPSbf8JSJyi4jc5X7+QGGbL7t93e7+zdc1Y0mgFxu++uDegfZe82HLnlmmW/kM7ICCnuTvpTb3QYu7JVBT4Wq+2HwZu3Q5K5mi5tRHTyOWzWxmZvQMomAMgBEzlxFlW9/tCPqQkDgvU9CPLMU9NnmKuzekzVo6jsATagUFnSQi9CULFks/p2hMnR5daTCl1oZuxNWgo/hJN/vcRbfocldnr11LwANfqBETS417z/w5bj3ftvEacynus5pb3BOvRigJjVRBTwI+e/t2Pv7VhzEKLS0z3/Ra1Xu27CD2c4t7zdN5a9BnmyfTC5cVUtwTV4OuRIVe610NXH/78rN8p7aShkQ0GAxdC/oU9Gb7cV7zhYs5ZeeXs2XlFPeygp72di9OfCyoD7q7BqFLcU9MOcU98GRoSJy1uOe1/A3TIlpAKN1CsGCCLiKeiLxGRD4nIruA+4AdInKPiLxPRM491D4qVFhISFxK0Ks69AoVjn0cMUHfuxduvpkbgCuvvHKxh3VQFMn5O995JVdf/UKMWYHqy5mc3F+R8woVjjKcAPTnwMuBpwM/IyJP71vt5cC57t+bgA8vYNvLgRtV9VzgRvcaYA/wKlW9GJvr8am+Y71WVZ/l/g0L5Vwy+NZD+5jtLPz56tPffJRvPZh/5H4F3S8RdBsUlyvnEX7S4cS9X7fr+gE136OlaUsu+x9HELeYnLmfvcsuzgj6mM6hkIXFiTm4xd3WoIdHqKCbvNZ4iMU9JXm+J/hSSArXmMDz8MS6+7M2ayYmdMR6n9oup+kEAuRlAZ6JSu1Fx31H9iJ7jj0R6kREEpL4TWZGz7DnzaW4z5QU9Do1YuqSt1kroqi2A9TjVEG3U+SWoKcuAlNos1auQd8/cYF1AqQEXWJ6amvQo4KC3tYQMdFAm7VOzbbpm3TW/ZKCnrRADc+960qWT29i1YE7ADhzWx6zU7y+/Qo62YRQnBP0w7C4+77giVPQYxsSB9AM/axtXj9BrxV6uo/RXjTucjgK+kbgbOBdwImqepqqrgG+B/gG8F4RWfQAogrHFxbSB308U9AXr11BhQoVnhwcCUFfv349P7VqFahyA3DVVVc9ZfXnRXL+G7/x26xf/wyS5ELgJ5mcfKgi5xUqHBt4LrBZVbeoag/4B6C/xeSrgb9xuUXfAJa7rhYH2/bVwCfd758EfhRAVW9zJUIA9wANETmE2Xbp4Ztb9vLovkPX+RbRSwxxVKgTPoiCXneqbB6oFXPG9s9z1rbrABDfJ/C9LMBs3BHNlVN342nM3uUXEQWW0I6qHadR227N70uEL8Ja3L0jb7OWJrTjatCHtD5L3wsLIXFiYjwvV9DzOvnYEmuvxn5ygq7OeJyeM9/0Shb3EXG93iP72X0R6hITY89XqmKPkxL0XEHvhMuYYI6GSxXvUm6LNtuvoKcEPbIEPfGbWYp7KAZ1UwdpSNxIZycA+8cvQL2AUK0KXqxBj7z8GLPaxI87+H0TJt26JeivD/6Tyal7+Nuvbc7eC+MWze5uztn6L7z4Wz9P4FTrxM/3O1xBt9ckVdD9Qm3/sMA/gKc/+FGesfkvAEviBXu+xfVB78aGMLDnox76eYo7JhuDrUG3x4wlZFxazBzG5NfBcDg16D+oOugbUdV9wD8D/ywiVcFwhXmhqgvugw4c1gxvhQoVjg5Sgn44Nehpe7X9H/843+apba922WWXsW7dOi6//F389m+fSBStBd7A5OQ3K3JeocKxg1OAxwqvt2Lb7h5qnVMOse0Jadte16ZymF39x4HbVLUYb/5xEUmwz7tX65AvLRF5E1bJ5/TTTz/4pzsK2H6gjdzycV7xyKf5/Hf/S94o+hCIE8Uk9nnMSDA0xb0bTlCPpgsKeto+raygen5IqGIDzAqPgqv33wbA3mUXM9Z6FIBR7HGMoY/8GhKjiFiFOV2mElgF/UjbrPnzK+jpa98TwoKC7hPjCXiCC4nLFfQaNlxtWgcJeppW7pmIogN7xNm+JbYEXQTqEhM5epWq2KnzYLpgce/WljMhjzLiCGOHMiWbMeUa9EbSr6A3MgU9IFfQfdOjR8AjUwkXArtWXMqqA3fwTO7nvsYbeMCckrVZi7xcpZ9mBD95bIiCvhKAtwbXw9eu57O8I3svSFoZ+a1H09l5Svx87MUShnQyJk1x5zAs7ifv/gqihnvOeTOxc1CI2DZrRrUUHNgMPcJC33gxMer7TkGPUISWP8FY1F608twFK+jDyPmRrFPhfy+iRFFlARZ3+wVW1aBXqHDsIw2JOyyLuyrccANfAp5Kn8y1114LwIYNG7jiiim63Z8GrmRs7DMVOa9Q4djCMPbYT4rnW2ch2w4/qMgzgD8A3lxY/Fpnff8e9+91w7ZV1b9U1UtV9dLVq1cv5HBPCrpxwt3bpgaW3fLIfp7znd9n+exmVh24fUH7SozVUVNlshtODFXQU9IVd2b5+FcfQgs11imJ+kj8SuZqqwl9r5QwDrB85n464STtxppMQU9VYmtxz0m/qOEj//0gGzfltntPY1Q81AsQdEBlXzF1D6/5wsWs3nfrwGdME9oPbnEvEvR8377G+CIuxV2z+njPKehGaux3BN1IgHEp9kGRoBfmetIU98ARdM8TakT0pKygjzIYEterTbKMOZoLVNCbAwp6I6tBD6Rcg755X8Q7dvwgf3/u+9m18jJU8uu3utYldiFxvQJBn9ERwqQ9QNDbtcnS67AQshbErcx9AXk5RVzYb9niHqOqWQ06hYmh9BLGRrlr2xRfuHtH6bi+6WVjixMlSDMIXCK/0Tw4sBH61IgwboIlvafTkLjEq9HzR5mQNq3e4jzVHHZInIh8QET+U0RuEJFrReRZizKSCsc9OrG9aQ+loI9VNegVKiwZ1NwzwEIJ+vr16znf82D7dr7olj0V9vbU2r5u3Tq+9a0VtFpXABuA91TkvEKFYw9bgdMKr08Fti9wnYNtu9PZ4HE/M5YnIqcC/wq8XlUfTJer6jb3cwb4e6yF/pjFZ2/bzo/82U3snbVkL04MX960m5lOzPY13wfA2Vv/dUH7SomqOkLSC5dZYpPkJMpP2nTqlqBv3bmbB3bNMjPraqhNnJGZD8Y/Rhj4hL7Q0TJ5DOM54sCqwWkN+rhLKk+MWrJUCInb3+pxoJVrglZB90kcke23uZ+w5xsAnLJr47yfMSikuLd6CXtmu4PreB5BweLuacxLO1/ghcnNtgbdFCzuEpH4dfZiW62peAUFPbe4F70YjYygu2R8p6BnFnf3+cbSGnQtE/SaJFmP8W5fDfpU0tdmzcxkYwCroEeOoPtSTHGPmE0COtR5cNkL7Di8/Dl+VFtEYkPiuu7aga2Pr5k2geb3CkDbTeYAtGors37qYBX0NEAPoNHdY38pTLmJJlm7vjjq8oW7H8+ujxSyD9KJj8Qo9+2Y5vZHy3G0numVrOqhZz+7iG3rZ9ROkAA0Ao86PaJg1J4Tt/9ErYJuvBo0JvjeM+o854zyBMSR4khS3O8F3gd8APvF9rci8vZFGU2F4xqpBaW+QIJeKegVKhz7ELE298Mh6Js++lEA/gdrb1fVJ5WgF+vO3/jGP+Dyy88A7gbewOjoKFdccUVFzitUOLZwM3CuiJwpIjXgp4Hr+ta5Dni9S3N/PjDl7OsH2/Y6bAgc7udnAURkOfA54F2q+tX0ACISiMgq93sIvBL75XHMYud0B6OwY6qDqnLT5j3snbUkKVVgT9r91YPtIkNqD1Znce+FywAIC+2krIK+wi23xDEkbTcWZQSwR0jge4S+N2C/FpTE1S/3Qqs4T5DXoJct7kkWHJdt70Li1IWwSV/dc7p8WIBcZl93gWDrZv6Ghxuv4UNfzmuj8z7ZQlAwY3hqeMvMB7m6fXVZQXcWd/VzBd03vUyBTWvQi0QSoOms6zV1CrsIDRcSB0UFfbAGvVe3xHCNZ4lot+8c70/Kr5tJ2QmReHmKe9Hi7pkeXdfuLrV8a6GJV5i0iF0NesvP+77POPt9miWQohPmBHa6fiKhzK+gr5yyf2rFnANPYxKXFv/o7ilu2rwne08yBT3O26wlSmx0IJnfEvRUQTelFP/I3fdpCcVYaF+nk0di4uz+s6UMIXEwir+IfdAPm6Cr6kdU9Yuq+nlV/UPgUspWoAoVhqLrQhwawcJS3CuCXqHC0kCjcZh90G+6id3ApidrQAUUyfmv/uq7ufbaFwAx8Gpe8pIXcf3111fkvEKFYwyqGgNvB27ACkMbVPUeEXmLiLzFrfZ5YAuwGfgr4BcPtq3b5r3AS0TkAeAl7jVu/XOAd/e1U6sDN4jIncDtwDZ3rGMWM+7Zafdsl3u2T7P9QD57mirLjd4+GCyjH0BKalKC3q0tByAo2NyDpE3X2ZaDjKAXatAd4Yqw6nnoewP2a8iDwGKnUpYVdHIFXS15LAa5FfugA1mgXIqU2A5rwVa0rwO8evrv7DZRt7BOnuLer6CnsCnubmICQ4MexqtzAEvqwmhmeA164XOkCnpWiy5CTSJ6fSFxo2rP82yfgg5wArZtWqfvHE/17LN3V6yVfcxMl89DkKe4h2Kyvu6eJnT61Hgj5RKFWGyKe9svK+gA48wWtvNJvMK2JskmcwDG249l9wvk2QSpowDcZIwXYiRgxC/fw8MU9NgYYufCKMI3UTZhExslcAq6J8W+9/Z8TAROafftpINnevz3A7vtuSLGeDV6wTheb4bFwuGExJXgviDPAcaB6UOsXqFCpqAfyuJeD2zPwcriXqHC0sDhKOgAfOUr3MRT016tHAp3AsacD7yEM8/0uO02+5//hg0buPnmmytyXqHCMQRV/TyWhBeXfaTwuwJvW+i2bvle4MVDll8NXD3PUJ6z8FEfHagqe+d6rBqrM922JOWBnTM8PlX+Ys7bn8WE8TSRU8TnQ5L0W9ytQloMigviNrE/Quw3CV0f64BcyfRNj1hqgCXnoS8D9mvIA9BUfHr+KOOOlEVuDKkVWjSxFuR+Bb3Qq7tfQU8J5cEU9NTinkiIrxHjtKxyL1JKcS8SdL9A0K3Kn5PNhkQQ1JhSO+FQi6cLKe6FNmtFi7tTztM0d1+gRkzkyG4yoKAX+o67yZPVHEARen0ULzbwjt4vsuaCF/KWLb/Iij7qFntFi7uSQEaWO8Z3+3D3wwBBD0mM0vLGs2UdsWObIL9XFK/0ecO4lU3mbF/1Ik59/Ea2rvmB7H1Jk+SLCrqJXUu9gJoXF9YtKuhFgq4kxgzkCniml12PuBAI54nkkzbOWj/mCHrPt9dy94FZbrzXnpuQiMSrEwWj+LOLR9CPxOKe4vPYmclTgd9fnOFUOJ7RSRX0QxB0EWGsEVQKeoUKSwTN5sII+vr16zlJBB58kJt48turFUPh1q9/mG73p4CrmJy8jZmZGd71rnexbt06gIqcV6hQ4djH3B74wDPh8bLL/jO3bOXSq7/EPdunmO5YMn3rowcGRPJibXajt/+Qh8sVdEdQUou7U9DFxPgaEftNIr9JaJyCnvaMdhb32Fm0Q2dx77dfA5nFHaAXjDHuLO6pep0RdBSjhmJ7ay9T0FOlvI+gH0RBzy3ulo3FgVN+pZVNAiQFRbXYZs0vBJypGQynS/wms86GXisq6Ga4gl7XVEG374u4kDhHto2bxBhxBH2uoKB3nXV8FfuJPTsh0o9/M9/NgZHTmZHxgfcSv54R9ABbRpARdDehkp4r45UJeoKPUaXl5/uNnR28RNC9AFW4tPNhPpc8l8C0s+v60CmvohEd4JRd/z0wtnTiB+w1VAkwXrnn/VgjyCzrxYmPJFGiRAcIul+sQU9MKSQuO5Yj7aO+veZdF1ZXvI9CjTBeSByM4fWOosVdRDaIyIWq+qiqfgx4FXDNoo2ownGLPCTu0LfdaK0i6BUqLBUsVEFfv349O/7pnwD4Ck9u/XkxFO6hh0Zpta4FbgSuxhhTCoW7+eabF/34FSpUqLDo2LsZ9j8M228rLf72w5Zs3/7YAfbPWfJwyyP7+fhXHyoRkyKxqC+AoOchcfZ5bM4rK+ipVTsORoj9EWqOoPtatrjHXkrQZV6Cbvzckt31x5hwFvdMQS/UKsuQGvS0D3p63NK+s/C4wefKOMnt6wCJZ8PUJmhln79ogw8oKugFxVzbWZu1/DPVmZHc4p6OLwuB0zxtHKDep6B7Ik5BL4fEjWibWGolG3uuoO8vTXb0I/A8Zr2J0rKIAPVCIpMG5SkjySzPu+sqANpOQU+MEiUmq6VPkUiIUUoKuoaWzC6XnLRaBV3ZwzJ26SRh0s4s7ttW2wDDVQfsvb1v/IJ8zEm/xd0m4hdLGcYbQam9X1lBt90Inrb137j4gT936/Sy+6SsoOefy88Iuh1jStBNoeVa6Nrp9YIxvGgW5mnrdrg4EgX9b4F/FJG7ROQT2BjcxRlNheMaC7W4gw2KqyzuFSoc27j22mvZuHFjqQZ948aNmXI9FF/5ClEQcNv8ayzKuNK681//9d/hjW8cw5gDwGsZHW1WoXAVKlRYmug4W3Jrb2nx8lFL3PbP9dgxZb+Md890eWDXbCmN3DNRFtLV6O475OFS9Tqt7f2frfa5LFXQU+IU+03ioEndKcMpcfI0tgRdLJEMfI/Al4H6aLAW6xTdYDRX0B2BLtYqe5iS8ixqbBszbz4F3RH3YQq6pnZmyT4LWAU9JegHS3FPsUynBhR0EzTZ5a0CYPeKS3KLe3qeTK9PQbfL03ZrnjC0Br1Jh8QLSzb2NAdglHZWLjAMtcArKd0AbZeqX+yD/vLO5zh9p+210nFt8b6xZS9XXncP3b5OYpnFvbBfE1o7eBr2By7JPj0mdWqmk1nck6BJ7NWp92yLwD2Tz8y2G2px98LM0v4jzzyZU5ePZNfD0zib+IgSk93Hkw9/gVMe/he7TxP1KehpDXpBQZcyQW9LmaCfKTu6pLw1AAAgAElEQVSQpIfxakTBmLXkL5KKfiQhcdep6ncBrwX+C/h34KWLMpoKxzUyi3uwAILeCJjr/waoUGEJQkRGReTQN/0SRFrf3e1O0elYcr5u3Touu+yy+Te66Sa+Esf89pNYf37ZZZdlBPyKK3xUnw78HC95yXdVoXAVKlRYuugOJ+gTDUvcNj0+w0ynTE53Tuf2Jt/0aDfWAFDvHZqg5wq6fR7bMuuU8FRBd0Qz8erE/gj1TEF3BN1Yi3uaQh56Qs33htagG6+ooI9nIXGpgl7sl+2R1xSf9/DfsXx6k1XQZbiCnm03ZHlGvv0+gk47U85LCnqBoBdbhC0fQtDVrzPjLedtqz7BrRf8eqY8DwuJ8zDUXGlAGhLneUJN44yIF4m38WoZcQebD2CcrT3xyy3Vigh8oe2XFfS2mzCJCn3QO+QqfMeluD+wy5LP1lxfArxrszYreUhc4trmLZPc4m4kyKznLa0TENOULgli2+T5DWqRJej7JwoKelxOcbcW91xBv+xpK6iHHoF7LYWgudhodg/FrQOMxAdADZ7GpTZrqYIuBYKeTtqMDCHoZ8jjbKz/Ghe2byXxalkLNrqLU4e+YIIuxREDqnqnqv6Nqn5CVXcNW6dChSJyBX0BFvd6kCWRVqiwlCAinoi8RkQ+JyK7gPuAHSJyj4i8T0TOPdpjXCysXbuWDRs28MADd7Bp0yOsW7eODRs2sHbt2uEbzM3B7bdzEzwldedXXfUVer23A3/GiSfeWQqFq8h5hQoVlhw6rpdzq0yue7EljdsOdLJnrRSPO4L+0J452u0OLUfQGwch6Gdu/TdO2PvNvL2YI6KzjtiFkSUhnrN0q/jEfjNTgIMCQfdMRExRQZ+nBt3PCWE7mGC5S/+OknINOoCPscq3Gi6997142D7o8ynoqfXc05g4Mdz66H40tUD3JXYXa9AHFfSyxT0cIOh9Fvegge8Jj3snoF6Yhav5fSFxvkimmgM0JU1xtxbqNPVeC7Xfsd8oTXSo+MxiSaI5iIIeeh7dvnDAttZpdWOiVEGXhKRAEdMa9OVNp+R350rbJwS2Bl1G8/GlBJ05Wlp3Y/Sy896ikb0fuwmI2G8QGPvZt635fm4/71d47IQfGLS4S4BKkCvmAvXAx09zChJ7/9Vc16iu+5sYMbM06FGL7ERXuv1cN2akZichvAJFSWvQm46gz7kxk/Q4WfJJMuOFRK494FNO0IGNIvJLInJ6caGI1ETkB0Tkk+S9JStUGMDhWdz9yuJeYaliI3A28C7gRFU9TVXXAN8DfAN4r4j87NEc4GJi7dq1PO1pJ/DYY3t561vfOi85X79+PS8cGwNjuBk7S73YAXHFuvPZ2YBe7y+wzdx+i3a7XYXCVahQYWljHot7amOfbkeZWzHFTpfk/ldf2UKn2yEORukFY4y1txE6tbIfz7z/g5z7yD/k5NURn64/am3IkZ0oSBVIFY84GMn6eBdr0IsKuu8JoSfD26wVSGXbn8hql1N7cthH0I3RLA3djsHPCHC/Up61PzMRX/zOTj5zy1Y27bREKrO4D9SgzxVq0N0kgSfZuQBLZFNM6tTAxABBE9+T7Bja1wc9tbj7vtDE9arHYzQ9jyLU6GUKuopP7KhbLxgrKeiQp+wnfn1IRJxFGHh0a30EnRpbD7TzGnQMI5qT8Oz47rVEZYIee9binhSOmvYqb0ovU+iNeNn0Rssp9BMyR4xLU/fz0LvYb/Kds9/IXPOUch90E6FeQOKF+CbGE/s80Qi9rHtAWpJRd7b1tuMfaU/2kc5Ouy9NiI1hphOzfMSOsWhxT++Jpme3b7lQPpNE2QQS0KegL05js8Mh6C8DEuDTIrJdRL4jIg8BDwA/A/yxqn5iUUZV4bhEx83w1hegoFc16BWWMH5QVX/XuYyyJyVV3aeq/6yqPw7841Ec36Ji48aNPPLId1ix4nQ+/OEPs3HjxqHrrV+/nq998IMA3MqTExBXtLb/2I89QqezAngdo6NSqjuvQuEqVKhwrGPXdGcgeXqYxX3fXI8teyxh2jPbLfUHP3GikSnoYFt2GQnp1iY5e+u/8mP/NdBxDlSp9/YTxnMkWYK6q0X3Qrq1Fbn6nhFPj9hvZm3CgizFPa1BdwRdxBLEQ6S4t/wJJqRNQDzQZg3SGnQICunetsd2GgbXT9DTWvqY/a4NXeo6KNaXQ67kT0hucU/msbgXJw0mGVTQ1SnoaR29yWrQu9k4jVri3xR77rq1yXIfdOJSrXkaGBcFYwPnUZrL3WdoEAbDn7VDT4hcoFyKDnWmWlHeZg1lxOQkPJ1Q6bqwZy/qV9BDEi33Go/8XE1vOzI+F5Er6E5VX8YcUWrhLxD01AUQ+01L0N12RQV91Ezz2uBGUKUZ+tn1SC3uqYKe3kNjLlE+JehiYqZaEQpMDiPo7temCyicS23/ca8Ufme8GnuXXcxDr/xHWJ1b858IFkzQVbWjqh9S1RcBZ2D7SD5bVc9Q1V9Q1dsXZUQVjlt0D0NBH60HzHYqgl5h6UF1SArNEayzFJDWnL/4xc+j2VzFhg0bWLdu3bwknVtvZSew/UkYS9Ha/u53/w9J8rPAe7nkkqSqO69QocKSQjdOeO7v3chP/cXXy2/0Keiz3Zgvb9qVPV8dcORz7flr+JFnnszTT55gfyvKCGYoMbGEmcU6JYpFhPEsvkaEyVxee+2IjxcEdOoraHTt8cUtVzxif8S1B9NBBd0RSc+zrdYSfCLtSwL3iwTdKrzLmcvIbTHF3cdwQbyJsdbWbFlRQZd5LO6+2nMhGFb17P9E/Rb3dN1xWsx0InbNdEqt2PxiinuRoOv0QA06YYPAy/uoa18cjacxqkroexkp79RXUJcID4OHWot7wcqektkoGBvodb5z5fMAmJh9iNAbrqGHvkfSp6C3tE6sWqhBTxjRwuSHU8a7zp2RtoFLkXgBxihJYX5Cg0Lonxt/rHkf9NTiPiGtgoJulymS5QnEfhNB8dNJDc1D4p7evYPf9T/GeOsRRmpB3orPhcfVC5MUHoYx156umSnoMftb9m9m+Yi7RwunLSXrAXaddtp3PumxvNA+zng1erXltE5+ATTK9f1HiiPqg66qkaruAHoicka6XESaB9msBBF5mYhsEpHNInL5kPeXicj1InKHq918w5GMtcKxg8zivpCQuHrAXC/OZtoqVFjKEJF/EJFPuX8HiThfWrj55pvZsGED55xzMnNzeU36vAr1LbdwK3DlIgfEFa3t7bZHHP8ZcB8iv8eDDz4IVHXnFSpUWDrYN2cVwG8/sp8b7nk8f6OgoE93Im68dyedyNBLys9KJ0zUef5ZK2k6QSRVi0NiYgkY6e6e99hp+7Ugzgl6qkx6fkinoKBLwbod+U1G6OI7Ygk2Nd0zUW5xFyF0smS/+lusm54LLMlZLjOFkLiigq78UXx11jIrHUOe1t5H0Mkt7sYor/Vv5Nc3/RQrDtw9YHFPtx2nxb/cto0/+dIDbJ/KLedFBb1GPte+nGEEvWxx7+8f7pkeRu2xU4Lera0ALAkO3LksWtlTgh4HowME/Y7zfpkHTlvHPWe/aX4F3fdIGjbxve1IcpsaSWJKbdZGCwR9mSOj6V02SNCtxb3Y+s4Pgkwl7xEQqU9CnuKeWdyZI9Kygp54dVuAT257T23unolR12YtRRDPMVLzM4Lu9dWgA4wV0uRHursAEJSpOftZhinoaQ16mqnQ8lKCHrHSK1vcFxtHRNAL+CzwHhH5fyLyKeCTC9nIJRr/OfBy4OnAz4jI0/tWexvwHVV9JvD9wB+JyOKfgQpPGTqRwROyL+eDYbQeYDSvG6lQYYnj66r6OlV9HfAHR3swi4Xf/M3fZO3atYyO2vw3sCS9nwSvX7+ehgjxnXdyC3DVVVctav150dr+6lffRq93KvAmRkY8rrjiiqruvEKFCksKe2fzFOq/+O8H8zc6rma8c4Av3bUt63YTxWVrdepUTBXE1JocEhMR8D+X/AkAbUcGS9s68m0t7mUF3fdDOrWVWQJ8XoMudKTBiHSpF0irZ2KnoDvi7Nk+6DBI0IsW9zkXRjfJ7NCQuIZ0Wc4so+0d2TKb4n4Ii7vGGFXOl8cAWDV1Z27jTxV0p75OSCtzct69bQrfs7kppXEUPmug8aDF3XcW9/kUdDfOwBMaYq95x12TJl1Ct/+e5mS0lxH0MbSPxqkXcPNF72bTma9jrB5kkw5FhL5A0x5jSux57lAnNkrXOAWdhBGdY2bkNG456ae50VxS2sdmPaX02rg+6MXyitD3Mkt4jCXnVkG367RTi7vMEfUp6Imf073Yt2Fzp+680d5vJi611AMIkg4jNT9L+hcdJOgTktexNzu7st+nWh0EWOYC8ETgutpv82b/+uz8ZQSdnKBPekUFfbBk44niiRL0+1X154DvA96mqusWuN1zgc2qukVVe8A/AK/uW0eBcZcMPwbsAyrP8xJGJ0pohH6phcF8GKvbL6DK5l7hOMGrXcjmeaq699CrLy2MjkIU2X/DsH79ejrf+hYBi19/XrS2X3HFvxHHvwT8BZdcMleytld15xUqVFgq2N+yZO3lF53IXY/u4e6tLr29kwdQaXt/9nsvMZw2mZtYU+U8S7F2BL5GTEzI1hNezKYzXoPvCOIP/8+r+OH/eRWQt18LCwp6VoMehM7ivg9Ubd9nLPFM7b/LCtZfm+JuQ+IEq056IvgiQwh6QUH3HEGXmQEVH2A1dqKiWXACKF6uoJt+i3uuoCdG2alWQW52dg9Y3IsKelAQlNLJijTmzOBlpNouTwb7rzuCnm5r5iPovmSqdNrPvCm9rJa/o8UadGdxD8c4GH72+WfwI991cvk8pJ+zaY+xT23yeFtrto+5sdekQY9RnWOueTL/ceo7BsLo3hn9Iuu676brFOXE9UFPjPKT3Sv48tPfQ+BJRsJjAiICq6A7Dj9XSHHPatBdQF/RTZGm6j/v7quQ+7/AzgOzzEWUFfSkTbPmZ6F9qYJeLzh2Jwr3ZVqDDjDbajPRDPPrL8LT5HFOl12Zmp5ep/Qel6THpBzbCvplIvIngAFOOow2a6cAjxVeb3XLivgz4EJsueJdwK8UA5dSiMibROTbIvLt3bvnt+xUOProxMmC6s+hQNCroLgKxwdeBzwI/LiIfPRoD2axMeqyYObmDrLSrbfaH4t87LQXuzGg+iFgF77/25W1vUKFCksWqcX9Tc9fwy31t3Dhx86Gh79K3J5CXT1wvXeAZtva36PE0Kz5WYZ2SsxTBT0tMbQKun0OS7xaRjyWzT3MsrmHAWikFvekReKUd98RH4NPt7bC1qjHMwVLt2RBYGnf664GiOllNehFNTcMZKAXerEGfdZzNehSVNDz58FVYgl6WAiJC5JOoc3acAXdMzGJKnuw+292d81vcZdWNrFRRDpZEUmNBr3S8n4FPfHrfTXofRZ3DKfKLgLPy1T9mRHbLGsl05y3z+a5FK3sxlG3KBhjnjJzACYaIWON8vEC37oAdGQFiQqPqw2LazsFfa5E0Fv0gvGBtn0As4zwLb2QWNJ09iALibtZL2DLyT9C6Ht0XLjcTp0kwSNRLwuSSy3uvmiWR5CS8aKbopjsnuy6j4CEVuKVygWCpE2jFBI3TEHP75VmN1fQZ1qdrP7cjscG83mY7J7wXejcXs86DyaSvQMhcYuNJ0TQVfW5wB8CHwFeC/zTAjcddkv1Fxu/FLgdOBl4FvBnIjJQea+qf6mql6rqpatXr17w2Cs89ehEphTYcDCMOoKe2rcqVFjKUNVtqvp5Vf19VX3j0R7PYmNBBP2WW9gH/N8rrli04xbV81e84h9ptS7C9y8nDOcqa3uFChWWFgr24NTiflZtiglp4WvM9J3X053dT6txAgAXPvxJfuzLL2HV/tvpxYbQ93jj95zFGStGWDFqCUPNKYhTbRs65otm9eDGC/FMj36kNeieJnhpmFxKSvEyC3ajty8jpCp+FvqVEpcWjawPeo8wq+cF24u709dqrUjKZjyr7FqLe6qgDxL0IsJ4JlNV51XQXUhcOsnR7OzKU9ylbHEfd4Fia8brpX2ldv8eYdnOTzJQgx57DXzPmzckDuCm+jt4yfgjvHL0XvaOX0CrcSIA7w8/xIs3/x5QVtBrbvLBEvSD66L9Fve0vMCEY7w++R0+Ef2g3T81eonJJlka9BilRRSMcaA1eI+kiNw1S7wQU6hB9z2bNXCetw2A65MXEOETFWrQU3UdIMLHqBKninxRQS8Q9JXdrQQk+EFYspX7SQdPJM9KcJMsRYI+XqxBL1jcO90e4418X7b3fGz1fnf60omsWUZo1VezKt450GZtsbFggi4ivzNsuapuBdaq6hWq+hML3N1W4LTC61MZDPZ9A/AvarEZeAhYnOz6CkcFnSjJbFeHQqqgz3SPi7DrCv8LISIfEJH/FJEbRORaEXnW0R7Tk4WFKui3AuuvumpRjlkMhvva1+6h17sK+Coin+aaa66prO0VKlRYWvirtXD9rwBWQfcExqO8Iqr98LepRTPsXXYRinD21n8FLMmMEkPN9zhz1Shv/r6zMyJmRRHlQCvKCG6qVhoJ8TADpDJroUbexiwlpbHx6NRW2vW6RYIuWeDYMkdc5mhYkm969AjxC2Qy8HOLe2qfLpKcjjToqc+kzGYp7mGh5/gqhhD0qEDQ50lx90yMMZolsTe7u3Prep+CPuGcABONstKfbtuTesniHgwh6IlfL9Wg91vcUzwrup3zo3t5fPULM+J5ppfbsLuan5s0mC4KRg9J0IN5CDrA7f7F7HYKeuQ16EUmmzRp0GVM54jCMXbNdGmEHqO1ctkEUFDQQ4xq5kbwRAgKx/qSucRSXpVCintBJSewFnl/0OKuku/npMgS9ET8AYs75H3p04mnemEME46g79AV1KP8/omibvbZ0n34ongyqKB3NKDVPInVyS4mKCroR7cG/f+kv4jIi0SkWPzwvYd53JuBc0XkTBf89tPAdX3rPIpt5YaInACcD2w5zONUOIbQiQz1wyTolYJeYQnjXuB9wAeAXcDfisjbj+6QnhwcjKCvX7+eQITuLbdwG7av62IExBWD4a68MgZWA79MvV7j2c9+dmVtr1ChwtKBMbD9NrjlE7BvC/taPSZHasicVfpukYtYMXU3YTLH1Pi5PHZC3r88MB2roA9xKF666zM83Hgt7blpao6g97J6X5da3aei1wsEPYztl3qqTEb4dOorCuvlCnoaCLbcEduW1vFJCJIOEUFZQfe9vLe2+5mSMwCjcIBxljMzNCRumIJei2dzi3vfZyop6KpZHflIZ1dJ9S2uu0JmbZK6L1xw4jgrnSuhqKAXLe6eJoMhcV5YsrgX+3y3Cgryd09fj68xO1a9KLNudwolAEUFve6OGQVjeIdgcYMEPX9dD3IXQ1fqdOMkez1CmxE6RME4u2a6rBlvZIR7pEBmY6egGz+tQXfnQmy/9df1LudtvV+mS81a3PGIXShfhxpG7Xh6jqDH/qDFfbZ5ql2/toJTdQeBJCT0h8RZgp4p6GaIgu4s7o/qmtI5iXq90mdKJ7ICzEANeqQ+s81TOFF3MqEz2TbHRA26U9L/GrhNRNJviIXWngOgqjHwduAG7EPsBlW9R0TeIiJvcav9LvBCEbkLuBH4LVXdc7jjrXDsoBsnNMKF3XJp3cxspaBXWKJQ1Y+o6hedtf0PgUuBNx/tcT0ZOBRBj++/nzpwD4sTEFcOhvs0SfI24KNccglcf/31lbW9QoUKSwudA/nvN3+MfbM9JkdrbH7I6lJfSp5F6EhILxjjO2fnlVJhZFuR1fzB56tn7LTa13nTX8+IR5oInqqU9zxazm9Ka9DBkl6hQErVy9qANbp7cwUdj5Y6izu5xR3cBAIhxQY+oe9lNegdSW3SOclJjLJfx6yCngXVHZygh/FMRuz8foJOqqBHJCZXwWvxTJbinpOxmMhZrc+Xxwh9j9e/4Gn82g+db/ft2qx1pZaRZYBADGoGc5N8yQl6u74ys9enIWkAk/EeYr/JnuXPys5DXCCp3aLFPXVCLEBB9/vuiaKCXg882k6Z70mDbmwweEQSskLt/dgLxtg13WHNeD2bwBgJiwQ9V9ATBaOK7ybhA9/jK+a7+Jx5vh2va7OWtvxTPNpuQiBWn9jo0BT3dvNE/v5ld3Lvmf+XlTLNCmZI8IYr6GmKu7v+pRp0p6Bv1VXlcySGkVq+r/TvxCfJcwnc/nrqM9c8iVN0Z3YdwE7OLDYOh6CPisg/Y5XsZwI/BbxfRD4ChbtsgXAPreep6tmqeo1b9hFV/Yj7fbuq/pCqXqyqF6nq3x7uMY5n3PHYAT76lS3MLaEQtXYvWVAPdMjbHUy1KoJeYWnDTTz+IVZJnz7U+ksRh7S433svAPct0vHSYDgA3/8jYA7fv7IUDFdZ2ytUqLBkMFcgyfu2sHO6A6pEB3YQE3BjdHH2dhSMs2/ZM/j0S23kpiXopkS+UhwYPxeAF3b+O7NG91xIXKpAfuexsvZV7+0ndmnaYdKiHnp5Dbp69IIx995cweLuMefI3grXfmpOc2rQo9zyq6igd0htzTkhNQr7Gedp8jgmtuQoLBH0wf9Ka9FMFjTnJ93Se57myqrR3OIOMJLYfWX1xhqzZ9xW1F7gPTqgQvtuX90+Bd0n4av376QfpTZrXkjHpbQXzw/AzhWXYfxa3iqulqvtHc2fnetir2O8gBr0dOzpuS/eIzXfYyeTfEJfyde852SBeJHUWWHsJM0sI8z1EtZMNLIShSKZzRT0Qg16qur3t1ROLOUtBe9NYR8eYvx5Le4AiLC/YSujR6RL3NdmzU/aULiuaUjg98x8gU+Fto5/XFrMaZ19Wo4zC4hLCno6EeRjss/smx5d7CTEXDPPNG+7cg/flO+3xcDhEPSzgJtcL9+Oqt4KXAZMAecu+sgqzIsDrR6v+9g3ufpz93LN5+892sNZMDqHoaBPOAX9QLsi6BWWPD6PdQqdCvz+UR7Lk4JDEvT7LDV/9W/91hM+VlE9f/nLf4/p6e/F895HGB6oguEqVDiOICIvE5FNIrJZRC4f8r6IyJ+69+8UkUsOta2IrBCRL4rIA+7nZOG9d7n1N4nISwvLnyMid7n3/vQwOhYtHHOWJCfhKJ1dD7L1gE2lbvT2MhOu4H49jS+d8y52TV7C7kkbZ6JeSOQ38XvTKGW1MEXdWNXwRcnNvMi7B4BIyxb3QMvkwk/adOors+1D38vqvyP1MQUSXCTos45wrnQEvVXQ7rqEJTIZFmrQO5nFPSfoiSob4u/jfG8rr+/8vR0nMYmjLcUa9PS4m0/7CVQCDN4AYUrH6WtEkpjM4g4wFu3FE7IWwKIxMyOnM6NNLpBHByY+0m27WqMhhT7oGOJ4iILuS6bSA9m5nevTNneseiGQT5wUE9/7E+8hVdAHFpeQEvQ0oLnYNq4eeigeH/B/jsf9EzNlO/IaTKol6Lsje02KCnrxOT51LKhn27Qlqtl1DvrOW4RPormCDrDdqdmDFvdBy/jjuiL7PSYonZ8g6ZRyB1KL++m9zTzb2wxYBX2GEaZ0tLRfH5MFUwPUXWu7AJPnEpiIKCPoeeu63ZPPdu/PH6R3pFgwQVfVUFX/uG9ZT1V/S7XgvajwpOP6O3cw3Yl5xskTfPa2bUNbIByL6ES2DchCEPge4/WAqYqgV1iiEJENInKhqj6qqh8DXgVcc7TH9WRgIQr6duBd733vEz5Wqp7feutt9HrvAbZRq32kCoarUOE4goj4wJ8DLweeDvyMiDy9b7WXYwWic4E3AR9ewLaXAzeq6rnY8snL3TZPx+YhPQN4GfAhtx/cft9UONbLFvXDJjH7t9lJzJujswimH2WuGzFSD2h099KuWRLz1WWv4kvP/yQzY2dmm0bBOGFkFeCaP8jWatEMm/UUHtM1/FHtIwB0SS3ulvSNmPIXt2+irBd3LWkReMKZKyyZjI2g4pNIgG96mXUchFljSdVkqqAXQsB6/W3WfK9A0Act7sYo/2K+l5vNeVyUfMeOhZie2HGslrwkYJYm53T+htvOeweI2GC2AYKePyfHUaekoI/FB0pj80yM+iH36Wlc4D02oAR7GGL16OEPKOip/b2IoGBxB7KQvVnXU7urAQ81L+axE22ienpdfJegD9AeQrNsDfrCUtzTFse1PgUd7PN24Atd11Iv8hqscAR9yowAMN4IhqrwqYKufkhsDInRfD1vmIJeJuip3TzGJzZmaA16iimTT2gkeAM16GlrNchrxtM0doCmdGlpnWlGSvsNSPoUdEvuPQyewNmP/hPLZjcTEWCMMjtia+IfDs9hj5ssCwrXarHwRPugVzgK+MJdOzhnzRi/8dLzmeslfH3L3kNvdAygEy3c4g4w0Qwrgl5hKeNTwD865eUTwAZg8H/vI8DBVKC+9ZaLyGdE5D4RuVdEXrAYx+/HQhT0xbC3F9Xzyy//OqovIAiuAVpVMFyFCscXngtsVtUtqtoD/gF4dd86rwb+xnX7+QawXEROOsS2rwY+6X7/JPCjheX/oKpdVX0I2Aw81+1vQlW/rqoK/E1hm0VB7/0XMfnFXwXgTj2HIGkz2tvPWD2g2d1D1ymuw0r+euEEQWTDqoZZ3GvRNFvlBK5LXpgt65qyxX3UzJa28UxEN7R9whumhe95nLu6YUmRW8d4lgQX26zNGEuqVmHJ8wHNs6S72m9xz/ugtzKCXrS4W0I7p00Cp4yGEtNzqeET0s7WbWmdmIDIDS7x6gMW92J4m590s5p6+/mnSuq+pzHqhTxgTuFs2T6gBHsmJsGnp8FAH/TifrPjeWWCnk5+pCFx39Gn8aGz/py2a5+X2rvDJP8PtWssQddCK760zdowdT0bUynNv6xq193zeOgJvghtJ/bFXp3J1OIulsyGvpep8UUVPptU8UOM2uwAfx4FfYuexEN6Ir2kSNBte2yDlCzuRXIz40QAACAASURBVDdFipaXW/5jgoEa9KKCnpJ1X+Psrg2JiQgGFPSAcg16SugDEgISnnfPezhp7zeInMo/NXIGb+m9g2tPej/tuh1/+veymDiSkLhLReRfReRWZym6S0TuXPSRVRiKKDHc+uh+vvucVVz2tBV4Arc/euDQGx4DOJwUd7B16FUNeoWlBhG50v26F3gR8Frgv4B/B14633aHiaEq0BB8APgPVb0Amx3ypNTEzEfQ169fj4hw4Bvf4F6eeIJ7qp5/+9u3kyTvAe4jCD7FNddcU1nbK1Q4vnAK8Fjh9Va3bCHrHGzbE1R1B4D7mUY6H2xfWw8xjieEu1u5dfdOPRuA02QnkyMhje4eoqYlAbNDMod6YUFBH2Jxr8UzzMkYMwXVsNtncR/R8he3p3FGIuvGKugpKU15ZuLX8UyvZHGfMZYornLq634dz8dJ0GdxP7iCnhLaiIDA1c7XiDIFHeBxtWNMe3enBNN4tYMq6HXbdTt7PUxBx/OZZoxxWiVCCjZwLsYjUo+ma7OW4LsK68E5eN8TjOaTDqmCPiJ2jAd0NLPX2/PgFPSCbbpLgFGlwPOJ/SaeCJd1P8SHL7th4LiQW9xD30Moq9q1oKige3TdDEfsNzKSOutqxEPfy1uOeYMWd1yoWyc2+H56zPJ5++Xol7gyfkNJQd/mFPSVMlOyuA9rW9bS/B62CnpOqv2kk9naIVfQA42y/ISAhBg/q3vPzlFfDXro7jcPQ71Q/hG5VnJRYvgP81xMOMYjJ72cr3/XNdx71s8PjPeJ4kgU9L8DPg78ONay+Ur3s8JTgPt2zNCJDJecMcloPeDcNePcsXVpEPRutPAadIDlI5WCXmFJ4j/dz3cA3wA+g21TeRaH35JyPsynAmUQkQl3vI9BVpL0pHxZHIyg6/btLMcGxD2RBPeiev7//t99qF5IEFwJxJl6XlnbK1Q4bjDMu6sLXGch2y70eAvel4i8SUS+LSLf3r1797BVBnekyknn2tL5WRnj3siqqKfJLlaOBNR7++k1VlHzvSwUeO9sN1NSo2CMWmwV8PkU9JY3xgy5+thN+6A7Qjw2oKD36DlFsG4sQRVNrGrpjpt4NadS54nc3URoU2MljqBTVNDLFvfAty2+DJJb7vtq0MHWLacKep2YruTr7FY7xlSBb/XseonfGFTQC8S5Lr2SFX3MTJV6tIsmGAnpSIO6xNSlfLnFJBi8UrJ6JDWCkscgR/q500mHtAb9bNnuztN4qZY8DYkroocLYVPNFXMRPIFpRokaKwe2KR478ATfk1IrvmJdeuBJdlMnXj4Jkt43ods+/T1FpnSnBD1KCByBH3Y/ApmVHnIFfQ37HUF3CvoQi3uLetaWzSroZYt7uQbdEXRiPFEEQ80p6NN9CnpNNDsXAKGm2xrCIkEnJFHNJhjCwAMRHjrlR456H/QUu1X1OlV9SFUfSf8t+sgqDMVtj9kvvktOXw7AM06eYNPjMwfb5JhBO0qyOpiFYFkzrELiKiw5qOrX3c91qvoM4GLgPcCDwPMX6TDzqUBFnAXsBj4uIreJyEdFZHTIek8Yvg/1+jwWdxcQ90Sl+1w9v4MkuRz4NkFwfaWeV6hwfGIrcFrh9anA9gWuc7BtdzrbOu7nrgXs69RDjAMAVf1LVb1UVS9dvXr1QT9cChHhpHNt0FRDooywnC67OLnWwsPQrq9itO4z10vYO9vl/V+8nwd32y/bKBjPCPqAgq6GMJ6l5Y0zU1AfU7t0ZnHvV9BNROLViPwRZ3EXPE0w4uX9vAcs7ra2uE0js33v1dz22x8SV/OF65MX8MmRNxC7CYOSxd3YmZFYwqwmOCS3uANZGnfbWcXbvcTt59AKuoexkwPhBOPJVKmW29MY4wV0nFo/KuX6YiEhET+b6ACIvBo+hsDtt4ign6C7NnU7nQPguuSFpXMzkGCOneBIVFGFF/fexwdOshPWRQI+DLnqLZwy2eTEiZx8p6Q09LzS5EkcFAm6s7gHBQW9ZHG3515817s9SjLlfL4xlWvQ7f1+ouwnNpr1iR9G0BPVLFAwxi9d0yBpI0WLu/vdd2TbXpuEHsGAgj4aasnBkNWgi6Fm8msfi50kScdfn2cCYrFwJHu/0j3o/YyI/J/036KPrMJQ3LV1ipWjNU5Zbm/is1aPsmOqk80cHquIE0NslObhWtwrgl5hiaE/4dfVNN6qqp9U1V8fts48+/mSiNw95F9/HeZ8CIBLgA+r6rOBOeaxwh+J8tOP0dF5CLprsfaKd77ziPYL/er53aieSRD8PqCVel6hwvGJm4FzReRMEalhA9yu61vnOuD1Ls39+cCUm7A82LbXAT/nfv854LOF5T8tInURORMbBvctt78ZEXm++95+fWGbxcEam18XmC5dauxlGSd7+7Na7k59FaP1gLluzFQ7QoFp92zUC8epx8Nr0MN4BkGZkdEskAzyll2ppXxUB2vQjRcSBaM0ncVdtN/iXhsg6FFiMlIbq8f9ms9rdE1AcXgjtYAHvDP59/GfJKI8HrB2cE+EiCDrS10jynqmA+zFEvQ0LT61uCd+gyBp88xNf0yja9PxizXoDXr42J7f3XCScTOVK9iqtgZdfDpiz9mo9LVsM4mrQS/0A5cagVgFPZYywU6J7bYDbRKjPHriD3Fn41LeHL2TZ/P3fNk8q6ygD1FjYzySxCroW3UNm0YvtZ9Lysfohye2vjzwhDd/79k8/6xcaa8VFPTi9sap2F1C2m4yJygo6EHB4p6uKyUFPZ8UGDaqbinFPbf7H8riHidKx5VFxHhZKzWwnQeKFnc/rUE3aU9zQygxsfoDCvpoWHZIpPdbQELN5FkHESGJ0czJMlpfOJ85EhwJQX8D8CxsiuWryG3uFZ4CPLBrlnNPGMtme85cZS1EW3bPl850bKDj/iAPx+K+zFnci6EYFSosAWwUkV8SkdOLC0WkJiI/ICKfJH9AnBeq+oOqetGQf59lfhWoiK3AVlX9pnv9GSxhH3asw1Z+Ulx77bVs3LixRNA3btyYkWruu49urcav/tEfHdZ+i0jV81tuuZ0k+S3gdoLgC5V6XqHCcQpVjYG3AzdgDTgbVPUeEXmLiLzFrfZ5YAs20O2vgF882LZum/cCLxGRB4CXuNe49zcA3wH+A3ibaibRvRX4qDvOg8AXFvXDrrmw9HKHmeSM2hTLkn0AVkGvWYKektDUJtwLJ2gks4AOPF/VXG363qTJrBYIuumzuBcUdFFLMo0XkvhNatol8DxEE0fQ1W1rg9hS6/iumR7d2GSkdo4GD+uJ2X67fX3Qn3fWCn7x+8/B94RW7JHgo4Wa4sT1044lpGYbdOGL0iMnv2mNe2pxLyroJ+35Gs/Y8tdces/vZZ8rhSXoagl6bZKJZCobW7qekYCum2wYkUE13uDRK1jcY7EKuo+hJ2X1N63Z/thND3HdHduIwzH+YOU1bNU1zMX2PSkp6GVyes/o85lijFg1O/9Z+y8ZJM398PsIeIosJM73+gi6vYazjBAlxk7QiAxV67es+n7uOev/w3cKejsyWTiciAzU7wOlkLguNR5c/iJ+qff2ckjcEAU9Nko3U9CDjIQDBHFucTcqGXkPXMs0r2BxH1DQ+wLy05KKAENQcGLEYoPw0iyIsfri29pL4ziCbZ6pqhcv+kgqHBKqyoO7ZvnRZ+f5JGettjfalj1zXHTK4qcILhbSVnCHa3Hvxeaw2rNVqHAM4GXAzwOfdkrMAaAB+Nj69D9W1duf4DFSFei9lFWgDKr6uIg8JiLnq+om4MXYh89FRUqeR0YeZm5ulI0bN7Ju3To2bNhgV7j3Xu7o9XjuEbYOvvbaa7nsssvYsGEDP/RDn0D1nQTBT9Gvnq9du3bxPlSFChWOOlT181gSXlz2kcLvCrxtodu65Xux34XDtrmGIa0wVfXbwEWHM/bDQtOWLHLRT/CsncvZ+fgkZ8t+TlplSUantpLRusfj052MhGY9q4NxfBJG6DLRKBOGmkt33xOPlGrQM4LuUrDHyAl62s858WrEfoO6dq3F3cQY8cs16IWQuE99ayuP6sl0Ry3BmqVJVKAYHS2HxNUDnxMmnHKOR6evjViitl1X7BT0mgvu6hYI+l5H0FOLe6uXK+j9KCrotlO6wYhHpzbJuD6UE96U5ElA16uBgSaDBD3BL32+2KsRMEtAgpHy82qR/N61bYofe/apxM6KkF7HksW9kE7++Mrn8dcn/AFm7zY7aZH2apcyQZ9PQQfwZThBzxR0T7LabgAT2HtlRkeIEs2cGcNS3Pcsu4g7TrqEYLvtS98tWNztNh5RUk62L1rcAT77jD/h+scf4DVG6QVjTI0+janxswfGGxulrTUQiNTP6swBAtPJXrep4WcW9wLZJiHCp0f572TlSPl6pTXovphSq7tIrII+kxL0xpPbYfxIFPRvDOlFWeEpwK6ZLjPdmHPW5MEbZ66yBP3hPce4gp4S9MNos7a8ab+IK5t7haUEVe2o6odU9UXAGdiHwUtU9QxV/YVFIOcwjwokIieLSPGh9JeAv3OdNp4F/N4iHLuEtWvXsmHDBrZvf4Dbbrs/I+cZYX6CLdbK6vnlwF0Ewb9X6nmFChWOH7x7L/z4R3n3Ky9kp06ywuyl7uzZq086zdaglxR0S3J6gX0eXOm3SkFXkCvou6NGqQa9Y+x6qaV8vKCg+4kl6LvmDLFXp0aXwLc16Ak+qaExr0F3irMzM3ddwFiq2Kc1w9biPkgSp1oRt+s5fM2U5z+MI6OxhITEme24Xeit3qbOrDfOPixRT5XZUhp8asEuEHRPTG5xr61gmZnOFXRniVavoKBTrkH3nIIeU7S4112XbzNA0IuKcydNSk/KztDSqREhcQFoiVcrhcxlCrqk2w2S5n7UQ4/akGfvrAa90EINQAN7jmdpEicmI9zDLO65gu/C24yW3u9PcoeyxR1sn/h0W/VCPve917P1hME5tCQx2QRNgp+p5F2pE8R5DXqLeoGg54nsNYlLkyopThjtm1AhDYlLCJLc4p5IQKKaKejHosX9u4E7RGRT1WbtqcXmXbZO6NwCQW+EPqvGauyYas+32TGBlKDXD8fi3rRfUBVBr7CUICK/k/6uqpGq7kjT00XkTxbjGKq6V1VfrKrnup/73PLtqvqKwnq3O+v6d6nqj6q6/jeLjLVr13LKKcvYvHkHb33rW1m7di3r16+nIQJbt/IAR9ZirVh7/q533eyS298LmKr2vEKFCscP/ABEeM4ZK3jeMy9iwhyAqa0QjvKCC8/grFWjxEY54FrPdh0ZjUJLTk+oRyWbNNgWawDnPe20soKuaUics7jTyofhCMlXHppmV9ujrt28Bl0CTBoS59fxkh5p9nfi6ETPsxMBc64ufJvLL40pq8QpXnbRifxH8GJ+Ifq1UjmjUdtPO1XQ6ylB15x89wh5z8r38Vex/S8vH1uuoMcuZbwUKJYSaXy6teVM6DQpjywq6D3Xd7vZR9DtufDpFche5NVcH3S73wdO+0m+/Jw/t+e0b2JCVYlNmaR6feukNnfjhZlFPjaafcb0XHqeDdMbdm5T/PRlp/P95w+Wrg2rQRdyi/uMs7inCno6jsCXbIJgWOu14mTBsCT3fgW9P+V+PkRGs9Z8EbmCPidj+KaTWd7bWs/D4dzPmiSEJEMJ+po+gp5a3H1MiaAb8TBGme3ENEP/oGUFi4Ej2ftLgXOwqs0rgR+mqkF/SvDATvtlW1TQAU5a1mTbgc6wTY4ZpLOGh2txBzjQ6h1izQoVjilkoZki8iIRKf7BLlabtWMKGzduZMeO+zjhhPP48Ic/zMaNG1m/fj0dFxC3hSNrsZaq57feehvG/CpwP0Hw2Uo9r1ChwnGLs886x/7y+F0wZgnuxadaG/yeWWu37rlnqtmmDWL7vuCu0j7qvf1cuOXjAFxy3pm8+0cvzd5rJ/bRPyWB4wWLe0pIIgJmTUhNe1kNuhE/a3/Wr6CroxNRn4J+I8+1xzS1oQr6CRMNXnS2DQqLCwQtMZa0xhJQk+T/Z+/M4+2oy/v/fmbmbHdfk3uzJxASAmExCSCbXkH2irYaEESs4lYp1loR2lqjrRWjRX+12NZaWlQUgqKgRQQxtIIKCYsEhEAMJCSEJDfJTe52tpnv749Zzpxz5tz95p4k3/frdV/nnjkzc+YsuZnPfJ7n85AQT4wVCXSLPxhzOeCNc7ND5ffBfnwHPTT+zJ9X7vegx8hTL+7rLhbo7rbhEvfG3k209mzAKSlxtyXu9ck7KDFYd/zf8do097/70td9IJ0veq1Qfm5cEOjxohR4/xpGUNpeoc87zJyWGpprypPhwz3owbx0yyBvhQV6RIl7KDDOf2mlZe3B76aUuei+QD9lfgsfedNRIxbothNKcVdGoaTdrMNQdnBxaYBkQWR7t3HTDX/LUa5BGhIlqfuhMWvhEve4yuN4DnpdYnLL22EUAl1EekXkAPAssMG7fRZ4zrvVTDJ/2N1PfdKivb44PGFGU5IdPYeGgz6aFPemGu2gaw5dPCf9VuApEfHrtcbWiF3F+D3nb3rTyaRSnaxZs4aVK1eydu1a2LwZcAX6aCl2z/8Hx1mOZX0dsLV7rtFoDl8aZri3rz0Nde5c9NZaV5j4CdJ+SNzexuN4XI7nvbkfYOULTviCbT+ibb8r2rOxhkLcNzDoFKemN4QEupNxf88qi34nRkJlqEmYXll3qAfdTGA6WXzFaCvPQTeLHfSv2e/i/tPvYCNzi2aNh/FDxcJl326KO0Gpd40nkgecQv9wRsWK3NjAQQ8FjPkzvYsddNfptjHIWm4SfKO4711RibvnoCdV4fz64kfeQf3gNhwxgvFw4Pegew76ED3oAA89v5PedPHkpdqSnCX/sxlJiftQ/edDEe5BD2acm0bw/rk96E5wASBc4u6LcP+CQfGM+2IHvdRF91sRls1pZk5LTegCRPkM+TB52wlCAnOY/G7hn/Mr+3ger3Xb6fzMhTTxkEB39UPSVMQkT86rHvmpfSpbHbeqwFDFPfLhMWtWSKAnyGI7nkCf5P5zGIVAV0rVK6UaIn7qlfKGEWomla17B5jXWltWxtTZmOK1nsGqTjsfl4OuBbrm0KJWRH4ILAJOBC4DbhaRfwPK02sOcdatW8eaNWtYvLiDnp5CT/q6desCgf7Hn/zkqPfru+dPPfUUjvMJoBvL+p52zzUazeFNfad7a2egzhURLZ5Af22/KxgyeYfHXt5D1lb8d/4CGtUBmnpfDHaRSrvjMh9a8U3yVg1hBu3iFPewQM8Muq2UthGjJ2+RJEtdwgocdN/k3JsWDLu8Bz3vOdb9Xkl9xnYvIrip7JUEurs8FxJotuOFxHmBafWG+7r7QgI9S0GgW4YUHHSzINDzET3o5xzTSl1ccDCCdZOeQ19w0E1ygUAvDokDaFE9ZSFxvjOvhhDoyZjB+i372Lp3oGid2hJHNnDQJRZsn3ec4P0PStyluLx8NKRiJoJ7Xu7PNo+bElQdHFCpIgc9EOim8J7T5rKksyEIcLZCIjxmFLvppQLdv7hUOiJuOAc976hgzF5emRxIzeKq3F+z33IrMM562j3PGFAJLIrHrP3R0ulFJe7X5j7OP3W6k2UMVXyxJOygh0vc4yqDraAvXWUOehQiYg+/lmaieHXfALOaU2XLZzal6M/aHCi5IldNFFLcR/6V8x10XeKuOcRYADyilLrKC4x7ElgB7MedrXtYcf3119PV1UVjIxw44F5R7+rqcsXz5s1kYzE+9eUvj2qfYff8hhv+C9u+CNP8JjCg3XONRnN44wt0gFq3xH1aQ3Hl5Eu7+rjn6df43uNbeC3vemR+KBxAKrObA7Xz2Nn2xrLdl5W4S2jWc9oV63U1KQadOEnJUJewMJwctpg4jmLXgTQbdqZxcmme3ebGmjglPeh9yhuX5ajgJ6IdGYCYUclBL4Sl1Ysn0O2wQLcCNzZuGfj6vthBL+9Bn9UUxxSnRKB747j8kn2xyHlCNRGahe2H8jWqA0U96LbEscTBxEZJ8QsNB7B96rzFZa8/bpWLWEcKPehWhIPui1vDkKL9j4ZU3OSDZy3gDXOaA0c8ZhrBLPJeasg7USFxwvy2Wt5z2tyykDgoFuvJmFFUOWuKBBdVpCSBvrTsv5S8o8h6M+ZNJxcI+mfqzuTlGRcH6w2QwMRBcAIHfUFLkhj5omA/Md33WEoddL9/vaTEPUHW7UGvthL3CoiIHHYnnNWI4yi27RtkdktN2WOdTe4fkWoOihscw5i1uoRF3DLY068FuubQQSkVU0p9tWRZVin1aaXU5P9VnyIaG8FxoK8vtHDzZjbmckXllSMh7J4r9XEgSyz2Te2eazSaw5+aFpi1wv29aTYAHQ3JsjJogBd39tHjzXWO5/YHy5OZbgbjrZG77y8ZsxamINBrGCROklzBQfdK3F/e00+GODGV5ZVut6w4HnP31eeNPOsPFYvlbScIfYsicNDt4nJ10xBsfxScJ9D7Ixx0Q0oc9JBA93vPRTmBODOUHZS4++umPMfVL3F3DIu8l+KeUAWRdqBuQeF1hcSeX5IeJ1/2voYd9ETMKOtzS1rlUsy/eFK5xL0wZm2sAh1gXlstccuILHE/oEpC4iLEuI9VocT9ouM7eUdoNHTcMoIqAH8tY4QOuu0ocp6DbqlM8F6krUZemHdVsF6fV72RJBskvYuyiZEvuqiCN7vdcIrNzSABviTFPaayZPI2mbxTXSXuPiLy6ZJF94vIl0TkChGJnEepGT+7+zJk8w6zIxz0zkZ32Y4qDooby5g1EaG1Ns6ePi3QNZpqp7HRvd2/P7Rw8+Yx9Z/7ZfI33ngz+fyVmOb3SSR6tHuu0WgOf0TgT++Hq38KK67xFgnHdNRHrt6jXFe3yEHP7iGdaItc/0DGcc/JQg61j+31oNfX1pImTooMtQnL7UEXC0fBy939ZIiRIIvpCeCls1oA6LVdodoXGuuWtZ0hS9x9ARh2UN1xXYXj8wX6YGgOela5Drrp9VCHE+Z9/NJ2UYXyZlE2FqpIoBcc9EJInGFZDKhEkUD3m65fs2YXh8QFAj1X5qCHBbohUmZUxYcQ6G6Ku+cw26qsxH3Z3GbOXlie0D5arLBA9yoHeiuWuJcfb3GJe+H3tvoEM5oKuiUcGBe+yGCKDOug52yHnOegx1QmWN8whH4vLBFgn3L/ndRRSHYX5c5BD19UUUbh+xAck50h5lVMlAr0ONng/a+NV4FAF5E1oZ+7gGtKVnkU+H9AL9BXtgPNhPCq168yK8JBn+aFxu3uK++TqRbSXklLMj66a0KtdXH2VPHr0mg0Lk1uyDA9PbBq1SpEhN4NG9jC6EasrV692g2YA5T6AJDioos2ctlll2n3XKPRHBmYFsw/CxIFUb6wZIKPZQg//4uzOW3JfAASIQc9ld7NYKKScBN2HnBFZzjxHMDJugK9JpViUCWwxKEhpoIedIA/7Oojo1wBmcQVtmcsnMai6fXMn+GW5PeFHPScrYKS9SiCGdohBz2Td1zhahYL9LQqiG/fQTcNccvhoxx0T3wZyiFHoaS5UOLuueQU96ArsbAMoZ8E8ZBIM1Se19rO4HOzby0ucffex4QMLdChvNVzaIEeD5xr25uEAu54NYBjptezYn5L2fajpeCgS1Divt8PiQv1nsPoHHQoLqALl/KHlxtGIeSvErajyHoOeszJBOubhrhBiB77vYqSOhkMPk9D5bFKxqyJJ9DDPejnPv5+3rDlVne/Xol73gsajKuCWRj1mU00I3mGA0qpld7Pu4BflDz+RuD93u+/HOkTi8gF3iz1TSJyQ4V13iwiT4vIcyLyvyPd9+HItn3uH4goB72tzhPovdUrZDNjKHEHaK1NsFeXuGs0VU/YQV+1ahVq3z7qgS2MbsSaX97+la98lXz+Gjo6nuOnP13NokWLtHuu0WiOWGY2FRs0rXVxFnXU82/vPRU70RiUuJv5AWJ2P+lEdIk7wOsVBLrKumZQPJ4g7QnaOjOHofKBQO/P2sE86pTnPCfiMa4+fR7xlHtBoV8lA7d07cZdOKpcqPr47msu1IOesx3ipoERc8VRINAp6UHPO5iGW6JtD+WgYweCulDiLsHr919HuMTdFGGQROCouvvLY5sJ4jGrJMXdfU7XQS92V0vnZfvBav7bETfLz4v9ygHbiAfvjx0xB32iCDvovbVz2Gu2s1HNLipx953xWIQ4LRLoJa/XEAnK2YsEemgdM9Si4OMoxS9f2EVv2r14kncUj1nuuMAN1nHB+qZIkdr3K0rqGCyUqzveeMJwl6HvoIdK3GsHthWOCQfLSTOYnEZ/soPbW/48eCw+zGi7iWAkAv0LJff/puT+x4C7gBTwoZE8qYiYwC3AhcAS4N0isqRknSbgG8DblFLHAe8ayb4PVwIHvbncQU/FTeoTVlUL9LGUuIM7WqRbl7hrNFVPWYn71q3uzSj24YfD3Xjjjdx3n6DUbA4cuImLL76YL37xi4B2zzUazZFJR2NxUJxvzgCYNc1Mj7lCMpXZA1DmoD9w2nd4YtFfkbCMwEF3jGIxKTlPoCeSpCm4lWEHHSgIdH9GuOca+4nx/aSY31bLjKYkT2xxg+SGddCdcgfdirvHUIf72gYpvOYMscDhNUQix6z5DrooJxDoUQ56kvIUd9MUBkkWlTkbjttjnrDMyBL3BPmKDnrcE6d+aJo/hzwR6aDHvdtCibsdUeI+UQTHaBkMJqdz/Zzv87LqJJsvhMQtmdHAn7xhVuRM9Upj1nyMkEPvE55IZYiU9aDv68/yi+d38sION+cgbzs8G1vK2Ym7eNY4tshBL9rOE+jN0ls4Pi/srSgkznK/w+Exa7HQZ+076Dmrlnu6HmR9wzmF9SolHk4gwz6DUurlkvt7AUTkj5RShlLqAaXURqXUGqXUZ0b4vKcAm5RSm5VSWeAO4NKSda4A7lZKbfWed9cI931YbOPzCwAAIABJREFU8uq+AdrrExUd6Lb6BN1VXAqezrlBHrFRXnVqrYuzp796X5dGo3HxBXpPj7fAE+jnfeADI96H755v3LiRzs5/ALbjOD/mL//yL7V7rtFojmguWtrJm45p58pT5wDQGhLopJppoo+ZzSmS2W6Ash707uaT2LjgaqY3JHl9v3teZUux2PLFaDyRZFD5idlpT5gWzj/TXi+4L9CVJ7b6k504CNtUOy21Cc4/riPYppKDHouYg57NO8QtE8vyQty8WeRpFepBxwp61U1DAvEaHRJnk1WhEnevB913vhMU96ArsThmWh0SryuaL28oGyUmiZhRItALDjolY9b8V+2XRfvn8YFrPdIedFWe4j5RWCUC2r8A4KjC55OMmSyb2xy5vYTC6qJK4P1F4dcafg2WUS7Q/YoKf/ye/1krw8JRKljfF//+Z+mXuDeFuq79eebhz8zwPqegB10Vj1Xze9D9UX3hkMOqEOhDUOqsj4aZwKuh+9u8ZWGOAZpF5GEReUJE3hu1IxH5kIisF5H1u3fvHschVTev7h2MLG/3aa9LVLWDPpizScbMshnuw9FalyCdcxjIVu8IOY1GU+hBDxz0V90/8R/8+78f8T7WrVvHjTfeyO23P86OHUuxrFsxTcUdd9xRGN2m0Wg0RyD1yRi3vf8Ujp/pXg1tqwuJ61QzDO7j9KNaaXN9NAYrhMRNq08E2T5+KfXLznTAdcsBzFiikJhtpxFPmPr4Peh+abjynMkD9UfxyTlreE7NwzKkqGqykj8TleKetR3iphCLF486Kw6Jc4/B7UEncg562EHPlJa4q4KDXq96ad7/+yDR2zFiLJnRSENDQ5FoE5XHMWKeg16e4h7Vg14TN0nFTP7oxBnue+YJdP944xFiL5ziXjxmzX184h30wpg1KC4/H6kY9T/HqPX9MveweA+/BsOQ4OKDj/998IW67Sgs08DwxHxRiTvwu2OuA2A37kWElrCD7n2viwS6aeJgBEnvll0ctG14c9Btryc/HHJYLT3olRjPtyNq29J0AAtYBlwMnA98RkSOKdtIqW8qpZYrpZa3t48/ybBa2dYzEFne7tNe9Q66XTQLcaS01Lp/9HSSu0ZT3USVuNuGAdOnj3gfK1as4HOf+xzp9NVAjksv3YVpmtx5551BcJxGo9EcydR6M5jbShx0BvcRMw2ObXDPlyr1oNclLfqzeRylSOTd5PfNyhWPcS+x3DHjSMI95zTtjNt7HeqtLpS4u+urkNjqt9zQMtOQovLtSinuhRJ3VwY4SpHzHPRYwh+D5jnoFDvo/vZFPehGdIp7VhUcU1PcsWu+sL6y91Yu/PVlJLLeXHfvtebNFJYdctCDEvdiB90xfQc9X96Dbhp85pIlLPUurPjnwg1J9z30g57DBA66hEvcndCYtci3csyEx6xBcfl5VMl69D6MiusbIkGYn09RD3pEiXs2EOgFoR60MygVzL33j33j/PfyvQs3sE9ct6BZCg66abv6KDwCzzQEJWZwESf8OQNY2JghBz38nle7gz503N7QbANmh+7PAl6LWOd+pVS/Uqob+D/gxHE85yFL3nZ4rSfN7JbKDnpbXbyqHfR0zhl1QBwUrhDrWegaTXWTTEIsVizQtzhOIW52BHR1dXH66edi2++lre1X3H33LXz2s5/lRz/6kS5v12g0GgjmoUc56FAQzbYVberUJdxxaemsTU3Odds3q04AEsoXMjHOPtY9TbfsQa+0OyzQ/RJ3z0EPueu+YDINIRErX15KocTdK2W2FQrXpYwHPeh+SFxxiru/X6PCmDUjVL6cDae4+yFxZiFtHsD03HL/9eTNmjIHXYlZJtCLx6wNfa7rl3kvmdHAVafN5cyF5ZUOdtCDHi8qcVdq8kPioHLy+kj2URoSB+7FmTKBLsWP2yWqMl8i0G3HKboYY1d4L9KG+71votxBV0YhZNAyBMewgu+IGfqcfWL5gSDVPvz9HW277liY/EsA0awDForIfBGJA5cD95ascw9wlohYIlIDnAo8f5CPsyrYsT+N7ShmD+OgH0jngzC2aiOdt0nERv91a611/9DqUWsaTfWyevVqHn54LY2NhR70ng0bRh0Qd/PNN/PIIx1AC93dn+fcc8/l7/7u7wAdDqfRaDQwhIOe7gHHAS+JfdnRM4bcvi9TaB30BXrSd9CNOPX17ugqMyIkzheQNeKfm5WXLlslDrpZKSTOEzvpvMPvXzvAiztdYRW3DBIJV0DXeinu/pgtCAt0w3VgI8eseTarU9yDbngl7ohBJpTs7Zc5++F5eStVHBKn8jiGRSJmkvMceUfMYKZ2nPywF6VjRqGk/9jOhkix7YRS3A3xSvgnscTd/wziJT3oMHIxWtrHHsaUwoUUnyKXPqIHPesp9sGszQ+e2Ma+gRyW6b4XjiJYv/TCT0aSOEqKS9y9z3VOe2NhmWGgxAraGmL5YgcdwMr3Bxdxwt/fqLaEiWZKBLpSKg9cC/wcV3SvUUo9JyIfEZGPeOs8D9wPPAM8DnxLKfXsVBzvVPPqPvdLMztiBrpPu1ciU61OcyZnjzrBHXSJu0ZzKOCHuyUSAzzyyAZEhP0bNvAqI5+BvmLFCj7zmc/Q0PBxDGMz73nPHH7xi1/w3ve+V7vnGo1G47GgrZYZjcmgZBpwBbpyIHMAcv1gpVgwrYGF0+vKtq/zBXoo2+cV5Ya5+aFvjhErCBPbDYkrcoatZLC+g1FkhxohBz0+ohJ3d50Hf7+T7z62he897l7aTZgGiaQn0D0HnVihktTvAXdFW6UUd+81KjtY33DynoNuoJQKyvWhEJLnl0LbRiIoj/a3VSUl7krM4L1JkC0rcS97vRFj5UrxLxD4pe6mIV6Ke/Ec9IkiKHG3xuGgm0M46EGJe2GZlDxeOgfdd86fe+0AT27d5x2nezHGUZXfC9Mw6CNZUuLufn+Om90WWk9wxAy+I1akg95H3ijvQY8K9ptohv4WDc3O8TyxUuo+4L6SZf9Wcv/LwJfH8zyHA/4M9FlDhMSFZ6HPbKq83lThhsSNwUHXJe4aTdXT1dXFmjVrOO+8F0mlamhvbWX2/v1sz+eDkryhWL16NStWrODjH/86X/ziMZx00l385Cf3cvHFF3PXXXexZs2ag/AqNBqNpvqZ1pDk1zeeU7ww5aVrf2kuHP/OQMgum9PM3v5skckROOjpgkAfVO45ZNILfQsLdDckrri3Wqwk5KFWMsGINR9fx5SWNFdy0H3hVqLPiFkGhpfiXssgCsGw4hAUikqw36IU96g56Mom65XHCw4mNrYycJRfrj/ovVa/xL0g0A0nF9qfjSMW8ZBADzvopqiy96OU0pL+KPwxa3ZIoG/fP8i2Hvf4Rhu4PBxWaUjcGBLLraF60A0Bp/g7EH4JUXPQcxHvj+W58LZTSHEv/V5ZpkF/PkWL9BeWBSXu8eC7ZnqJ8DJEibup8pEOelRS/UQz5ksASqm3TuSBaCqzbe8AhsCMIYS376B3V2kf+lh70GviFrVxs6r76zUajSvS586tZdOm/fzl1Vdj5PNsH+G2vgN///0diDg8/fQnyGazeryaRnMEIiItIvKgiLzk3UbOdhKRC0Rko4hsEpEbRrK9iNzorb9RRM73ltWIyP+IyAsi8pyI3BRa/30isltEnvZ+rpnM1z5m5r8JfGG65yWIu6OmDEN40zHt1CcL4tp30Pszee4+5st8Kvch8p4cqKEQphWMl3LSGMrGMUIzpOO+g54tn/stBQc9TCUHHQqucpiEZQQCtVbS2EaceCxWtp5lFkQbwECygz/MfLt7nEGJuzf3HDMYs5bH3SY8ui1w0A1foMfd/mXfrfVK3A2RwJEPO+juSsP0oEek1pdiB2PWvFF3hsHm3f283O2KzonWh211cS46voNjOxrK9j/SkLjhxqyV96APPQfdrzDI5gvvUzgkrlKJuylCv0pGlrj7n52/L0fMoAc9ZpeXuEOhnaNSef5kMVU96JpR8Oq+QTobU0NexfLnYVZrkvtg1qYmPnqBDjC9McnOA+nhV9RoNFPG2rVr2bbtSRobF3L/rbcCcOa73jWibbu6uvj+99fw9NMnIvIgqdRe4vF48JjuP9dojihuAB5SSi0EHvLuFyEiJnALcCGwBHi3iCwZanvv8cuB44ALgG94+wH4ilJqMXAycIaIXBh6ujuVUid5P9+a4Nc6MTTOhHd/z/29bxfECi2RyZjJWxZPIxX3RHjcRIC+jM3GprO4y34ztic2U2TIiwUi2IYrwhv6XiaR21+UgG34Je6SRpVICaOCUKvkoEetC65z6/di15HGMeLErYJA97cwDcEMjVlThsVjJ/w9A4lpoTFrNjaGK8icvNuDjoFTVuLuijT/tTpGHEG589GVKgrLC5e4YxTem+FK3I+eVodlCKcfFT0Gz33+whz0qPdnonvQRYQzF7aT8s7TJVSAnjBHdu4elLhXGLPm9qCHloW3jZyD7oXDhZx1yyxUSwRz0EveC9MQ+kjRxIHCMqfQuhFuwQj3oFv5cgfd3waG/v5OBlqgHwK8undgyPJ2gJYa92R270B1loIPZPOk4mPrqOhsTLJjf/Q/HI1GM/WsXbuWlStX8va3v5FMpomvXf9pAI4+++xht129ejVr167lySdbUGomjvMfvPOd7+Syyy5j5cqVeryaRnPkcSlwm/f7bcDbI9Y5BdiklNqslMoCd3jbDbX9pcAdSqmMUuplYBNwilJqQCm1FsDb15O404UOLeL17m3/7qJebXDL2k+e7RYSGCLUxE36M/mgLDzvCfSkZIPZ6L6Dfuwr3wZgwBufBmB5DnoNmSEc9JLlQygO34AKO/0Jywgc5ITksI0YiXh5Kryf7F3aw+wYFoLnvnoCXYnplbh7c9AdVTS6zSpJcffL5Q1v1BwQhOXlVKHEPSzQh2sQr0/G+Pylxw+ZKxWegx5+rcFTTLJYDD9daoTmWqFMfoRj1opyC6g4B730OXy3Pe/NWSs1L01D6FNJkhT0UHjMWrgFwxEr+FyjStwh7KBHPjxpaIF+CLBt3+CQM9DB/QeUipnsrdIwtYGsTc0YStwBOhpSvL5fO+gaTbWybt061qxZw/Llc0inYUG9mx68bvvwRe5+efvXvrYfkT1ccUUD3/3ud1m0aJEub9dojkymK6V2AHi30yLWmQm8Grq/zVs21PZDbQOAiDQBf4TrvPv8iYg8IyI/EJHwiOAiRORDIrJeRNbv3r17uNc48SS8QDgnH5S4h5nXVsuMJi90LWHRl8kHosj25ECKTCDQfXEM8PiSv+XRjiuD+5Y3/ixGvkyghx1KKLi/Q5W4++u2h5Lp45YRCFX3eGJFrZKF5/FEW4nAUxghB90tcXfERBw7cNBztlMs0PPlJe7gOrBGINB9B90vcbeKStyHG7M2EpzQmDX3NZYK9HE/xZCExXNqhOfuQ4XEmcOMWYuag57Llwv0Ql6BYiDrfralFxBMQ+in+AKV6fgl7rGiEvfwHPRKJe7aQddEksnb7Owdega6T0ttvGod9MGsPeKrcKV0NCbY2Zsp+8er0Wiqg+uvv56uri6meafBu15yh6F/5HOfG3bbrq4urrvuc+zYcSqLFq3ngQd+wle+8hW++MUvBvvWaDSHFyLyCxF5NuLn0uG3dncRsWy4k4QhtxERC/g+8M9Kqc3e4p8A85RSJwC/oODMl+9IqW8qpZYrpZa3t7cPcyiTQDyU2B6LPmc8e2E70xsS1CUs+jP54LzKd9BryBREcUiQbJlxIRLqrfZbkEycCAfdvS2drT2UwPED0/w8JXBHWRUL9DjJUHq2b/oopYLZ2GFc8VUIiXMddANDuSXuDgY5W5FWhecwI1LcAUwnF5RC+4Fw17xpUfA8oylxHwn+6/ZL3Se7xL2U8O5HOiLZF89R8+4NcT//iinukSXu5f+c/RJ321EMemOlSy8gWF6Je9GxBQ56rCgjwTHM4MJLVIo7FC6SDHWBaTLQAr3K2b5vEKUY1kEHT6BXYdq5UoqB3Nh70DsaU9iOqtr+eo1G4xII9C2D9NfUQDw+5Pp+efv69ccACV544XouvPBC8vm8ds81msMYpdS5SqnjI37uAXaKSCeAd7srYhfbgLCbPQt4zfu90vZDbQPwTeAlpdTXQse5Rynln3z8B7BsLK/3oJCoL/weiz5nNAzhjKPbaEzFihz0vPJL3HOBKAyTixXP647HC0K6rAe9JCTOL3mOEm4+mXyEQLeMor5324gXOeh/dGJhzrsfHBZGSZSDbnkhcXbgoGeiStxLQ9q8WfBQEO/NDXXefbMoGG4iHHTfufdL7Evfu8k2c8NPN9KLATHDiHTPwe1Lj1tGxaC18AUWpRRrN+5id8Q5v+2o4LMezNokLKM8JM4rcS96ficUElfWg+5+rlZ+IHjfi57T/w5oB10Txh+xNnuYHnRwBfq+KhToWdvBdlQw2mO0dDa4/9B0mbtGU90EAn17jpcGosvFwvjl7evXn4BlPc1VV53Id7/7XSzL0uFwGs2Ry73A1d7vVwP3RKyzDlgoIvNFJI4b/nbvMNvfC1wuIgkRmQ8sBB4HEJF/ABqBvwg/iS/0Pd4GPD+O1zW5FDnolU2dZMxkQXstgzkbr403cNABbLMgUp5a9AnWLv9XoLgH14oV1hm2xN1z0IcSen6/cWttPHBW45Y7X932A9ukuMT92M4GPnjWAt66ZLrXg168zzIHXRnBMt9Bz+Yd0pFz0L0edN89jShx92+VYQWCHiBvjX/U8daO83j8uM8wmHT/U41KKp9MJLLYZGhScbNipewlJ3Ry4dLOIUvc/QssB9J5Hvz9ziCxPsxg1g4+60rh0+ZQDroRq9iDbtmD5M0UvzjlVp5Z+LFg2/As+oPJ+OswNJNKINCHCJPwaamN84fdfZN9SKNmMBtdhjJSOhpdgb5jf5oTK3Z/HTxe6xnkmW09bO9Jk7MdUjGTWc0pjp/ZyPSG5PA70GgOU6ZPd2937hLiwElDrOvPPr/qqpv56lenccopP+Pee93Z51/84hc5+eST6erqOhiHrdFoqoubgDUi8gFgK/AuABGZAXxLKXWRUiovItcCPwdM4Fal1HNDba+Uek5E1gC/B/LAx5RStojMAv4GeAF40nP2/sVLbL9ORN7mrb8XeN/kv/wxYsXBjIOdhfjQ54wzmlKkc3bQt22H/Lqw2Hx+wfuD34vmQJsh+VAi0NvqEjTXxGitdcXtSHrQ/ermukSMVNwkm3cCMecYMUw775a4l5Rbz2/zxslF9aCHHXSv59wV6HkMFd2DHsv3uhcEvNcUONh2tqzE3b8tddDz5vgFejbexKY5K4P75Q76wSlxH82FgLOPaecNcyMnItLZ6L4nG4aagx5y0CsxmLPd8WheD3rUBQHbUbyuWoqWhUvcDXF/twy3hcJ0st46g+TNGna1riCZ3VPYX0mJ+8HS6VqgVzmv7hsgZsqIhF+1Ouj9nkAfa4l7Z6PvoE9dkvuBdI7vP7aVu57YxqZdlS+CLGiv5ZKlnfzJslnMbS0PadFoDldWr17NM8+8ANzKpq2DxCicRHz2s59l1apVRev77vn06WswjCyPP/4XpFLu7HNwg+e0QNdojjyUUnuAcyKWvwZcFLp/H3DfSLf3HvsC8IWSZduI7k9HKXUjcOMoDn9qidfB4N4hHXSAxlQMR0FdwnOKQw56uO87TNj9tCyTvDKwxCkrcW+pjfOp8xcH9/0e9NKU9Shq4qZXbZkvPh57ELskJC6MaZTvX4mJETjormOuvLnX4ZC4TKgHPZ7rxQ4J7EJIXDaU4l4Yr+b4M9BDPeh5c3hDbbQYJV/PyU4U9z/rkfafA9QlLOqGqZQNH3fYpTcMwW85j8qbqk1YtNXGOePoNta9sjfoQY8y/vKOYquaXrTMrFDino630ti3CXBD4vyLK+E2BaekxP1gOelaoFc52/YNMqMpNaIvREttnP6sTTpnV/wjNhUMZt0/amMNiWupjZOwDLb3HHyB7jiK7/x2C//0wEYOpPOsmNfM312yhGVzm5nTUkMiZtCfsdm6t58nt/Tw8Iu7+PraTXx97SbOX9LBtW85muNnNh7049ZoDjYrVqzgy1/+MnV1OdL9HexU0NbWxpo1ayKFdldXF9/97g+44IITMM0fkUplimafa3Gu0Wg0oyQxMoHe7I3mrfHG3xpWKOSsgkAPO54x08DGxIoIiSvF70GPGptVSk3CpDZuFq0bngle6dzWMASFm+7ti0slBoJrEBl+SJzhpnaHQ+LCPegxe4DBRGE+ueOFxIVL3IvEm5fgHl42EQ56KfmS+v2DFRKXsCb2SoA5RIm77b3GfIRAb66J8eE3HQW4r13hjm/uaCx/r/O2wxZVPPghKiTOEBhMTqOz+1HAK3G3arz1Qi0fvoMeKo0/GGiBXuWMZAa6T4tXTrS3P8uMpon/AzFWBgIHfWxfNxFhTksNW/YM39M6kWzvGeQTdz7N4y/v5cyj27jhwsWRYrsmbtFen2DZ3BY+ePYCduwf5PbfbuW237zCz3//Ou9aNotPnb+4KPxEoznc6OrqYs2aNZx/7hZ2qnYMqCjO/fL2Rx+dBjRj2+7s81QqxcqVKytup9FoNJoh8GehD1Pi3lTjit49/a5wMc3itPQowqIwZgp5DBIMH4p21sJ2XtmzhWkjqASNmwYttXHCGi2YCW4mSVoVHHTv2GxHYXgXBBShHnRPkOOFxBneHPSBbL6oxB0Kye3u7wUH3S9xd0JuuWPEXEc97KBbE++glyaaT/4cdHf/E232hY87/Hs4QyAfkd4eD10o8AVyXyYfOb457yheV8VTFIJsAcPCMNx9iAgDyenE7AGsXB9mfrCCg17cgz7Z772PDomrcrbtG2T2CBLcoVigVxMD4yxxB5jbWsvWvQdPoD+xZR+X/ssjPP/aAVa/8wS+84FTRuyEdzam+KvzF/HoDW/hg2ct4EdPbectX3mY2379yohKvDSaQ5Wuri4WdObYwlxaFi+uKLL98vZ//dcMIlt4z3tm6tnnGo1GM178WejDOOiBQO9zzxcToYkbFUvcjbBAN4JgOTVMoNixnQ384zuWDln+fNyMBsA1ZC45YQbvOW1u4Xk957qnfmFZD3qwjt+vHupfDvegG8p1+t0xazYmDjZCz2CODMWvN28WLiT4gXmmHU5xD13MkJhX4j65Dnpp9cFka0R/9xPtoPtfodLDN41ChkBptQBAwiwch/9Zp3NOZGVuznbIlfjPphMOiZNAbA94IXw1mV3DlriXhh9ONlqgVzGDWZvuvsyYHPRqYnACBPq81hpe2dM/ZHjERLH2hV28+z9+S23C4kcfO52Vy2ePKZCjIRnjry86lvv/4mxOmtPEZ+99jvfe+jg7prCXXqOZTNauXUt612/ZzAKeeu011q5dW7bO6tWrAfjwh/+R7u6TWLr0CX7yk3uCcDjQs881Go1mTMRHJtAbU+75oj++9pjOpuCxyj3ohd/DAr00JG4sXHHKHP7h7ccDrmsbFvOpTLd7rE0nkYiZ7FH1PBg/t2h7XzSFtZ0r0H0H3fZ6xv0xa66jvm8gR1pVdtCdYA56NrrE3bC8kLhQivsk9KCXln1PtovrP1uiQsXCWPFFbunhGyI4jkIpVfRa/e9ckYMe2jZKV0Q58MUhcRIEFw4mXIGeSu/0QuJ8gV54Ptv7bH35cbDGrWmBXsVs73Ed45EkuENBoO8bqC6BPt4Sd4C5bbWkcw67eid3FvpDz+/kw995gmOm1/GjPzuDo6fVD7/RMBzVXse3338K//iOpTy5dR/nffX/uPd3rw2/oUZTARFpEZEHReQl7zYyOlVEPiEiz4nIsyLyfRGZtDEDa9euZeXKlfzxWTPppp3rvngLK1euLBPpvnt+//1uiMszz3yCbNYNh9PuuUaj0YyDwEEf2tgpddCXzW/DVl6vuFUXuU1YmCSsgkB3JkCgi8iworO76QSSMYNlmX/nn+s/UfSYL/zsIgfdLHLQMcp70HsGsmUjueywgx70oGcxnBxQXuJ+UHrQR9C/P5Gkc+77NpqQuJHgf8alppdp4GUIFIfE+XPV46ELBeFKjqiQuKisA99BV2JiGmEH3T0PqUnvwrIzQfWEHwQIIQfde9rWuugWkIlGC/Qq5tW9rtM6YgfdC/3w/+BWC/1eSNx4HXSAVyLmIk4U61/Zy5/d/iSLO+u5/QOnBRc8JgIR4YpT53DfdWexcFod133/KT57z7Nk8wf3j67msOEG4CGl1ELgIe9+ESIyE7gOWK6UOh53FNHlk3VA69atY82aNbxxtnsS03rcJZGCu6urizvuWMOTT56IYTxMKrW7KBxOu+cajUYzRoIe9KGnyDSmXIHuO+gnz2kKBHcu3hS5TVhA1yasUFn8wZES2XgTlmFghQSWT7gHfSCb529+tIH+nAocdAMHxEThpriLcjBMi56BHPfab+Sehf9I3hPj0T3o4RL3kHgLStzDKe6TUeJ+cNsjM965aaWe/7ESCPSS5aYnxB2lihxwv2UhXGof/h5Glbj7Dvzdp6xh3ZK/8Z5PYUsMRDCkUHHhz5lPZXZhOJmgYqLYQXe/A001cS5fMZt3nzJnlK96bGiBXsVs2+c56CPsQW9MxTCk+hz0YA76uAS6+5/NZAXF/WF3H9d8ez0zmlL895+eQmNNdInXeJnXVsudH34jHzxrPrf9Zgsr//03vDYF6fSaQ55Lgdu8328D3l5hPQtIiYgF1ACTVrpx/fXXs27dOlKv/xqAzd0NdHV1sWLFiqCsffXq1axdu5ann25Cqbk4jhsOd9lll0W67RqNRqMZBSN00GOmQX3C4kDaNVCOn9kY9JLPmtGJZZa72aVzzC3LK/2dAAd9KB498Uv86qR/Cu4nY2aEwHNvHUexZc8ACtg7aJcJdMdz0EXZWJZFXybPAerY1H5uKIyuQkhchRJ3Zbj79ZmMkLiovuz5a24/AAAgAElEQVTJJDNpDrp/W3qBxb21HRX5WotL3IcW6G9Z7Iru/ubFvDT3cjcckELlgyFSuKBjJsnEGqhJ78SyM8FnryIcdIATZjWNqxp4NGiBXsVs2zdI3DJoqxtZ+rdhCM01cfZUWQ/6RITEdTYmiZnC5klw0A+kc7z/v9dhivDff7piQp3zKGKmwd9cvIRvXPkGNu3q45KvP8Jjm/dM6nNqDjumK6V2AHi300pXUEptB74CbAV2APuVUg9E7UxEPiQi60Vk/e7du8d8UCtWrGDH2m8B8IeXjaDsfcWKFcHjK1eu5Oabe4Ae3v3uGh0Op9FoNBNF0IM+tIMOFBkRqZhJUtzqp1RDGyvmtZStX5qN5QvayRboW2ZcxKud5wX337pkOstLjs8XfLZS9HkXHcQw3TFrSmGgwDCDsndRDqZVeP2mSCDEwiXujifYTDsTSnEvbJeNNZK1GooE3eSUuLuu8CffegzXnDl/wvdfyrJ5LcxtreH0o9qGX3kUVOxBDzIEVFGJu9+xEA+HxIW+iPWJcjPtrIXt/OM7lgYuuX9BJZzGHq7AGExMI5XehelkguqJqB70g40W6FXMq/vcEWulVy2HoqU2zr4qE+j+HPTxlMpYpsFR7XVsfP3ARB0WAEopPv2DZ9i+b5B/v2oZc1uH/09torhoaSf3XHsGTTUx3vOfj3Hnuq0H7bk11Y+I/MLrHS/9uXSE2zfjOu3zgRlArYi8J2pdpdQ3lVLLlVLL29vbo1YZEV1dXfzxyfNpYC933PF40cg030W/7rrP8dprp3HMMU9w330/1OFwGo1GM1H4DvowY9ag0IcOJcFXySbmt9VywqziyTWlrqc/K3q4MWsTzYp5LcxvKz5XCwu8A5mct8xClBOUpvu94mEHPby9X7qeD4fEiYVCMJxsZIn7oyet5oljP130HuQmISTumrMWsHxuMy21cRa0R2cETCR1CYsPn31U0AoxURR60IuX+4I5X1Li7jvk8aIS98J2IzHUAoHupe8fPa2OYzsbgsezsQbiuQMYKh846E7RrPsjTKCLyAUislFENolIWf9kaL0VImKLyDsP5vFVA9v2DTJrhOXtPs211emg18TNUV1oiGJxRz0vvN47QUfl8u3fbOFnz77O9RcsKrsiezA4qt0NozttQSuf/uEG/v6nvz/oYSCa6kQpda5S6viIn3uAnSLSCeDd7orYxbnAy0qp3UqpHHA3cPpkH3drPs9MXuCJJ7J89KMfDUat+e75T37SCaR48cWP63A4jUajmUjiIytxB2hKFcKvis7PUm7m6PEzG4uEcKlA94XPcGPWDgZmyEHvDTvoymZv36B330CJieHYCA6xkEA3RYJy9rCDjgi2kfBK3F3hHxbjg8npZBItRYLOtibeQZ/fVssfv2HWmCYKVROFMWvRGQJOqMT9rIVtQb93OAzOF/OmlGcRRFHqoJ9+VBvnH9cRPG6bSRK5/QDkjWTRNu52BycUrpQpEegiYgK3ABcCS4B3i8iSCut9Cfj5wT3C6uDVvQPMHmFAnE9rFTroAzl7XOXtPsd2NrBjf5qeCeqxf2ZbD1/4n+c5Z/E0rjlzwYTscyw0pmL81/tW8L7T5/Gfj7zMB25bz4F0bsqOR3NIcC9wtff71cA9EetsBU4TkRpx/1c/B3h+sg5o1apViAivPPEEc/gtsJy///ubuPrqq/nwhz/MHXfcwe2338X69adhGA+RSGwKxibqcDiNRqOZABZ0wQmXQePsYVf1HXTLLJECqcJQkFPnt3DG0a1YppSXuHtO8sF20KMIj1nzBbojBo6d5+sPbXRX8kaiCTaGsonFCs5oImaEetCLh504RswNiQtK3Mt7kMPvQTW8H9XKcA6624PunRcsmsb8tlouXzGbJTMayvbRXj+y9l+/XL30c/XJm0ninkB3vLn3RZ9nxOd9MJgqB/0UYJNSarNSKgvcgVuKWcqfAz8k2h06rOnL5Nk3kBuTg15tc9AHMvlxBcT5+CUpv98x/jL3/YM5Pva9J2mri/OVd504bnd/vFimwaq3Hcc/vmMpj27q5h23PDqpifWaQ56bgLeKyEvAW737iMgMEbkPQCn1GPAD4ElgA+7f+29O1gGtWrWKX/7yl7QB0/k1kOSWW37Nj3/8Y26//XbuvPNObrttEKU6cZyvYBgGX/jCF3Q4nEaj0UwUbUfDH38TzOHLcqfVu4LFKj3/SRVS3A1DmNtayxsXtJadJwV911Xg6hpFDro3Dg0D5bgzzwEQ30F3H29vqOFP3jCLj5+zkJq4VehBN4qFn20mMJ0MRkSJe8Ak9+EfLvhCvPQbEx6T5/eg+9/LE2Y1EQtdRPLHqLWNcNyZX91Q+rn62EaSRLYHiHbQp4qp+kbNBF4N3d/mLQvwRgS9A/i3oXY0UeFG1YYvzvzxYiOltTbOvoEsjnNwRzIMxUDWpiY2/itQ/hW0Z7fvH9d+lFLc8MNn2NGT5utXvIHmSQ6FGw1XnDqH715zKnv7s1x6y6P8elP3VB+SpgpRSu1RSp2jlFro3e71lr+mlLootN5nlVKLvdL4q5RSmck8rid//WvqgAZ+A8A99+wim83S1dXF3Xf/iO9/vwORF4jHH0Ypxcknn6zL2zUajWYKmNbgCpayca8hB91ndksNJ5b0pPvJ5U4ViJmwA+s76DYGKCcQ6GJYnkB3TSzTtFg2t5npDd7sa89Bz5c4rbaRwHByoRT3qXFUDwcqp7iXO+iVytf94OmOxpFVGPtiu/Rz9cmbKUzlz7gvd9CniqkS6FHveqmi/BrwaaW8S1YVmKhwo2rjZV+gt40utKy5Jo6jXIe4WujP5qlLjv8PWltdgnmtNax/Zd+49hPuO182t/w/oqnmtAWt3POxM5nekOCqWx/nO795ZaoPSaMZEZ983/sAWLC4gXj8NR54QDjrrLP47W9/y003/QGlTkapL6GUHbjnoMPhNBqN5mAzzSsRzpcaOsnoOegnznaXn+ONsSoI1Spw0D014wr0goMuynZHrOH2oDtiYjp+L3mxBPLTusscdCOOaQ9d4q4ZGcOVuDuOm1hvGlKx337FvBbesngaZy0cWcK8L7YrlbiHl/sivhouOk2VQN8GhBtkZlE+n3c5cIeIvAK8E/iGiFSa9XvYsWWP76CPTqC3eiUf1RQU15vOU5eYmD9oy+e1sH7LvqB3dbRUS9/5cMxpreGHHz2dNx/TzmfueY6/+dGGoKxHo6laut2Kj6NPPZVs9t+AC3nwwa0sX34+Dz74VuBp4NvE43Htnms0Gs0U4pe4lxGLXi4ivHLTxXz18pNoq4tPWYp7FL4D25vO4V9vsDHccWoVHPTS444aswZ4IXGZwEGPLHHXjIjCmLUSB72oxN0pb7sIEbcMzj12elHZ+1CoYUrcw856YQ761H+np0qgrwMWish8EYkDl+OGHgUopeYrpeYppebh9lH+mVLqxwf/UKeGl7sH6GhIjrp3u7nG/QOzb4KC1CaCvnSe+glw0AFWzGtmb3+WP+zuG/W21dZ3Phz1yRjffO9yPvKmo7j9sa1c9Z+PVV0AoEZThCfQv/XjH7NqVSeQQeRW7r//OqAD+DBXXXUlP/nJT7R7rtFoNFOIX+I+WhqSMd6yeFowR3yy56CPBN+ZzYTK9W1V7KD7c9CNCg66L7xLhZxjxL0Ud7/EferF26FK4KBXWG47ipyjRpTOPlL8z7lSiXv4gkxhDvrUf8ZT8q9KKZUHrsVNZ38eWKOUek5EPiIiH5mKY6o2XtnTz7y20c9S9GcC7umrHiHXm5k4gX7aglYA/u/F0fVm+/POq7HvfChMQ7jhwsV89bITeXJrD2+75RFe3Dmxo+Y0mgljzx4A/vrmm/nsZz/K299+L0qdAMwD3sNZZyX42c9+BqDdc41Go5lCpo0wBTsKyzRornfPUdXUTWwO8AVduJ/eRkocdNMrcY920Atj1kpD4uLuHHRd4j5ugjFrlUrclcK21Yjd8ZEQXHgZogfdpyDQp/47PWVHoJS6Tyl1jFLqKKXUF7xl/6aUKguFU0q9Tyn1g4N/lFPHK939RfMnR4ov0KvJQe9N56hPDp8oOhLmttZyzPQ6fv7c66Pa7j9+tZn7n3udT1+wuCr7zofjHSfP4s4PnUY65/COWx7lF7/fOdWHpNGU4znop158MWvXruWXv7wGy+oEZhGL3cMzzzzDjTfeqN1zjUajmWIaU+M7L4t5DnoqEZuQnKHx4FdEZvKF2Crb60EPC3QlVqjEvcRBD3rQI0rc7ezQKe6aEVHoQS8NiXNvbW8O+mQ46JVL3EMC3bs4Uw2f8dRfItCUcSCdY09/dtT951AQ6NUyai1nO6RzzoT1oAOcf1wH617Zy56+kQVS/3bzHr50/0YuWtrBNWfNn7DjONicPKeZe689gwXtdXzwO+v514f/MOZefI1mUvAE+sPPPMPb3/52bNvGsvJ89KPXkEqlyOfzfP7zn+fGG2/U7rlGo4lERFpE5EERecm7jbyqLiIXiMhGEdkkIjeMZHsRudFbf6OInB9a/rC37GnvZ5q3PCEid3rbPCYi8ybvlR9cykK4Lrsdrrhr5DvwnOSm2iRvO3EGp8xvLpuVfrAwI0rcHa8H3ZCwQDcw/V5yonvQ86UOuhF356APk+J+oHYeG+deOQGv5vDFqDBmzfRS/vwU96F60EfLaELitIOuGZJXxpjgDpCMmdTEzaoR6H3euIuJFOgXLe3EUXD3k9uHXffVvQNc+70nmdtaw+p3nlgxFfJQobMxxZoPv5GLl3bypftf4C/ufJqBbH6qD0ujcdmzh3QiweNPPcXll1/OlVdeyX333cc3vvENfvzjH3PllVdy2WWXkc/ntXuu0WgqcQPwkFJqIfCQd78IETGBW4ALgSXAu0VkyVDbe49fDhwHXIAbPhxWaVcqpU7yfnZ5yz4A7FNKHQ18FfjSxL7UKuLYS+CY80a+vj9r3RMzR0+r5y2Lp43bmR8LphHdg25QKHHPKSkqa6/ooJcIOceIYzgZjGFK3H969k94YknZV1UTolDiXnwuHk7htydJoFccs2aEQ+L8OehT76BP/RFoyvBHrI2lxB1cF32k7vJk05dx/6BNVA86wLGdDZwyv4XbfvMK7z9zfsVSmL39Wa6+9XFytuKbVy2b0IsEU0kqbvL1d5/MsZ0NfOWBjTy/4wDfuHIZR0+rm+pD0xzpdHezLZOJFN9dXV10dXVNwUFpNJpDjEuBN3u/3wY8DHy6ZJ1TgE1Kqc0AInKHt93vh9j+UuAOpVQGeFlENnn7+c0wx7LK+/0HwL+IiKjDpHztwuM76B7r+aIvVEOid1pDkotP6GRvf5bndxxgy56BCTjKERyKdxpY3INuYIRK3LO2FJUuV+xBLylxz1m1JLL7MVQOByO4IKEZPRXHrEmhBz0/wSFxeJ9/pRL3Ygfdn4M+9Z/x1B+BpoxXugcQgTktow+JA3deeLWMWetNT7xAB3j/GfPZtm+QO9e9Gvn4vv4s7/uvx9nWM8i3rl7O0dPqJ/T5pxoR4WNdR/Od959Kd1+WS//lEX76TOmkQo3mINPdzZ6pPgaNRnOoM10ptQPAu50Wsc5MIHwCsM1bNtT2Q20D8F9eeftnpGDxBdt4Acf7gdaogxaRD4nIehFZv3v37pG90inmX9+zjLs+cvrYNjY8gRtRmdhSG+eMo9tYOrORmDn5lYtGZEicgeBgoIL7yhjCQRffQS8Wct1NJ5HM7aP5wMaqSPc+lDErpLgHY9YcRd52sCYwJM5P7R9RSJyeg64Zipe7+5jRmCIZG9sXpK0uzu7e6nDQe9PuP4yJConzOf+46Zwyv4WbfvZ82ci1l3b28q5//w0vvN7Lv175BlbMa5nQ564mzlzYxv9cdyaLOxu49ntPsere54r+g9JoDgarVq1CRHjigQfoxr2AJCKsWrVqqg9No9FUISLyCxF5NuLn0pHuImLZcK72UNtcqZRaCpzl/Vw12udRSn1TKbVcKbW8vb19mEM5DDCKS9yjWDqrkYuWdrKoo44Lj+/gDXObmNc6NvNpKAo96IWQuLwSDBzmNLmCe3FnU1HifPkcdPf1lJZC72h7IwAzd/+fTnAfJ/6FFKPSHPRJ6EH3WxPyxqE1Zk1/06qQl3b1jatcua0uwe+27Z/AIxo7fon7RJeXiwj/9K4TufSWR7ns33/DX523iFnNNfzqpd38169foTZu8u33nxKMZTuc6WxMcceHTuOmn73Afz7yMk9u3cfXLjuJBe265F1zcFi1apUrxufN47YtW3R4oUajGRKl1LmVHhORnSLSqZTaISKdwK6I1bYBs0P3ZwF+GVml7Stuo5Ta7t32isj3cEvfvx3aZpuIWEAjsHd0r/YwxRerxtBipjZhsWyua5T4I26XzsqxqzfDs9v3M5C1Ge9/GaU96JYh2BgkyPGfgx93l8WsIoFdOcW92EEfTHXQU3cUTX1/qIre5EOZSmPWfOFuq4nvQTeU76BXSnEvuOYqaNsYvX890QGJ+ptWZdiO4qVdfZx+1NiFZWtdnL39WRxHBV/6qWKyStwBZrfUcOeHTuO6O57mhrs3AO4/kEtOmMHfXnIs0+qjr5YdjsRMg89csoQV81q44e5nuPifH+Ezlyzh3afMPuSD8TSHEN3ddE/1MWg0mkOde4GrgZu823si1lkHLBSR+cB23PC3K4bZ/l7geyJyMzADWAg87gnvJqVUt4jEgEuAX5Ts6zfAO4FfHi795+PGHN5Br0R9MkZ9MsZR7XXkbYftPYNs7xlEKdjeM0jeVnQ0JsjZiv5MHhEYzFauDjRKUtzjloFdUiQsyikJias0B7383HF38zKa+v4wrtJnESIvRPjLDXEzlvb0Z9h5IINSYBrue9UzkBt23+BdmHAUTsnzGEKwbHpDwtUISmGH3tLahMlA1mZ6QwIR4fX96RFfODEEpjckaa6NM6s5xUs7+zDEDa7etKuPTN5hWn2CJZ1uu2nMFBKWQSbvIALHdTYA7vp5W2GZBiKwqKOeHT1pWuviGCLs7s2Qdxwsw2D/YA7LEKY3JsnkbLK2w0DGZn57LaYh1MRNNu/uJ45bVZGqqaWlNk5fJk/edmhMxcg5ilrHPSbHTGKZglKqrOq3NmHSWptgfnstG7b1sLc/x4L2Wvb2Z+nL5FnS2cD8ttoJrV7WAr3K2LKnn2ze4ZjpY++ZbqtLYDuKnsFcMHZtquj1HfRJmpG5cHo99113Js/v6KVnMMui6fW01kVfJTsSuOD4Dk6a3cRf3fU7/vpHG1i7cRc3/fHSI/o90Rwk0mno7+ekt7xlqo9Eo9Ec2twErBGRDwBbgXcBiMgM4FtKqYuUUnkRuRb4OWACtyqlnhtqe6XUcyKyBjdILg98TClli0gt8HNPnJu44vw/vH39J/AdL1BuL+6FAA2EetDHVw5smQZzW2uZ640W3nUgzYF0riw7aP9Ajud27Gd6Q5K8rdjbn6VnIMuMphR7+l1hNJh1xVhjKoZZ4uwPJDto7N0U3J/TWsdW7/fahEnq2PPYanezeE4H+9N5bEfRmIrx+v40/c2L4FVI5nqY01JDU02MvkyeXb0Z4qZBa12cgaxNz0AWyzCoT1rs6s0wv80t58/biuNnNrJjf5r9gzle6e7nzIVtKOWaajsPpIlbRmAsKS8szXYUyZjJtn0D9AzkAjFvmcLePjdrqiEVY3FHPVnbwRBh1wFXxM5qrqFnIMsLr/eycHodDckYu3szzGmpoS+bJ2mZmIbgKMXzOw6wuMMVyXHLvbCRztnYjiJhGeztz5J3FHVJC8dRvLJngL39GUSEjoYkLbVxpjcULmy0hc45T5jV6LriphEEEjbVxPmTZbPYP5gjYRlkvSsFC6fV8chL3Sxor+UdJ890W33nRH9vXt+fpqkmFrQDK6UYzNnUxAt6Y3FHA/yPe3HjpAUzYFFH+Y56Tfg5WPEkK5eHCmx+6N7Mba1h2dzm4Hk6G5LsG8hGnlfXTmC1sBboVcaLO91+6kUdYxfo/pemuy8z9QLd70FPTN7YDRFhyYyGSdv/oUZHY5Jvv/8Ubn30ZVbfv5EL/t+v+PI7T+DNi6JydjSaCWKPGw93zmWXTfGBaDSaQxml1B7gnIjlrwEXhe7fB9w30u29x74AfKFkWT+wrML6aTyBrylhHOXAQzGtIcm0hnIXu7EmxulHtVXcLhUzSXs96A3JGKYqSBz7ih+wbMbZxH69ATyNPqetnrfOmo7tKNrq4ljmTHjDmyL1YLb2jfCM+/uZCysfQxg7Io3cb189cVZjURDarObivnwRIWYKfhTVrOYaZjUP/Xz+/uaEevxL30tfQDaEHGIT4YRZTWX7C+dglX4eJ9WMXFuICJYXFOiXrvuVnaUj+XK2Iu84JC1z2ByujsbiYxKRInEeYHujiK0KVbUxLyTOSpU/1jyPM44u/rwNQw6K6aVD4qqMF3f2AoyzB939hzPm0RkTyP6BHHHLIBnTX7WDiWEI15y1gHuuPYOWmjjv+691fOqu37F/mDIpjWbMdHvF7W0jO3nRaDQazSGMHxI3TA/6waI2YQYl2am4SdYpiGOzrp22ugSNNSGRJibt9Qk6GpPDpobHO5eM+niGGhU2kSnlhxL+e1Ia7O8L97ztkM07gYs/IdieFopFCHCAmHdBI1Yi4D/8K/jg2ok7jlFyZH5DqpiNO3uZ01ITfRVohLQHDvrUj1rbN5CluSam+6CniGM7G7jn2jP4WNdR3P3Uds65+X/52YYdU31YmsMRX6C3Hv7BjBqNRnPEEzjo1XF+l4q7FwpMw+1vLvIjfHEWvpgwmkT21DD2tWZEWIYrO6NS3GvjJr/a1E1/xp5Yge6luFcU6KYFZrzcYe88AWqmbgqUFuhVxks7e8fVfw6FEvc9VeCg7+3P0TyKUhjNxJOMmXzq/MXce+0ZdDQm+OjtT/Khb69n276BqT40zeGEV+KuHXSNRqM5ApigHvSJotYzthKWgWUK/blQwpnllSSHRbmhJdDBxqwwZk1E+Pylx/P4y3vJ2g6JiRToPlEl7D6xVOUS+ClCfzuriGzeYfPufhZ1jG88VlMqhmlIVZS49wxktUCvEo6b0ciP/+wMbrhwMf/30m7Ovfl/+fpDL5HO2cNvrNEMhy5x12g0miOHcaS4TwY1noOesAwsw2AwH3rQF19hgT7aCwt/+QL8+ZPjO8gjnEIPevljf7JsFmcf0w6UC/gJobSEveixGi3QNZV5cWcveUcFSYpjxTCElto4e6qlxL128gLiNKPDMg0+8qajeOiTb+Yti6fxTw++yPlf+z8een6nnl2tGR++QG+ZupIwjUaj0RwkRjgH/WBREzjoJpYhpMPeQ+Cgh0vcR3ncDZ3QetT4DvIIxzAEkcoC/IpT3BT1LXsnocIzVjPEY6mhBfwUoAV6FbFh+37AHUkwXtrqElXioOdo0g561TGzKcU3rlzGdz5wCpYhfOC29VzxH4/xzLaeqT40zaHKnj2kEwmI6QtyGo1Gc9gzSSnuYyVw0GMGpiHFc9B9dzTsmldJaf6RhmVIxe6C85Z0cG3X0Xz8nKMn4YmHEOBNc6BxduXHpwA9Zq2KeGbbfhqSFnNahrjKM0La6uJTHhLnOIp9A1latECvWs5a2M7PPn4233tsC//8y0287V8e5Y9OnMGnzltUNKpDoxmW7m62ZTJMwn+rGo1Go6k2AoFeHULXF+hx0+1Bd6IEelEPenUc95GGaUhFB90whL86f9HkPHGlkDiAy79fdd+H6rjspQFgw/YeTpjVNCGJ59XgoPem8zgKmmq0o1bNxC2D950xn//91Jv587cczYO/f51zbn6Yv/3xBrb3DE714WkOFbq76Z7qY9BoNBrNwaHaHHRvxrfroBvFDrp/Xj2eHnTNhGAZxuT0mA/HUAI8XlNog6gSquNflYZM3mbj670snYDydoDWKuhB3zvgPr8OiTs0qE/G+OR5i/jfT3Wxcvls7lz3Km/+8lpu+OEzbN2jE9810axatQoR4YkHHmAPbhqriLBq1aqpPjSNRqPRTBZBD3p1SImamB8S5/ag21ESp6gHvTqO+0jDddCn+iiqnyn7dorIBSKyUUQ2icgNEY9fKSLPeD+/FpETp+I4DxYv7OglZyuWzpwYgd5en2AwZ9Obzg2/8iSxu9d18Kc1VNdVKc3QTG9I8oV3LOV/P9XFu0+Zw91Pbafrnx7mk2t+x8bXe6f68DRVxqpVq1BKsWzuXLoBpRRKKS3QNZr/3969h0dZn/kff9+TIQmQBOQQCIcIKIIRARVBardVQUXWFa1rRX+12Nar29Zuuz3belXi7s/+bHd/bd22W2vV6ra1aulB2tKDqF1PIAIiKiDFcCYQCBCOgYTc+8c8wTFOQoDJPM/MfF7XxZWZZ575PvfXPH4n93xPIrksaqu4F729zVpBzGjxYyTo6kEPRbyDIe5d4vL/B5WTM3e9NAnl/yozKwB+AFwBVAE3mFlVm9PWAu9397HAvwH3ZTbKzFq8fhcA51T2Tkt5A3sl5tts29OYlvJOROu1B5RFa2VE6ZxBvbvzrzPG8NyXL2bW5GH84bUtXP7dZ7npgZd4ZlUdLS1a9V2SaIi7iEj+iNw+6MnbrLXXg540xL2jVb2lyxTELC1TeTtt8qfgo3/K3PXSJKyvvSYCa9y9xt0PA48CM5JPcPcX3X1X8HQhMCTDMWbUorX1VPbpQUWvDhYxOA4Dg6R4a0N489CPJuilStCz2YCyYu74hypevG0KX7p8FKu37eUjD73M1G//Dz9dsI79h5qPWYbkuMZG2L+fcZdcEnYkIiKSCVGbg1749hD3glibReJaNQd/ExeWQr+RGYxOWsVjRkE0bplIC+s/0WBgY9LzTcGx9nwM+GOXRhQid2fR2p1MHJ6+/YNbE/3ahvAW+dq2p5GieIyy7tosIBf06VnIrRefznNfvoR7Zo6npDjO18+ZpK0AABrgSURBVJ94g/Pvms9X5ixnyfpd2ks9X9XXAzD1+utDDkRERDIiFgxxj8jq1637oBe26UH3WNJCxeXBYN0bH3t74TjJqIKCDA9xz1JhZU6pfjMp/7I3s4tJJOjvbef1jwMfB6isrExXfBm1pm4fuw40pTVBb533vbUhzCHuhxhQVpzZoSzS5QrjMWaMH8xV4waxdMNuHnt5A79bvoXHFm/k9PISrp8wlGvOHUy/Eq09kDd2BIPb+/ULNw4REcmMyPagt1nFvSBpoeIBVTB7t5LzEIW2inuWCev/qk1A8o7wQ4AtbU8ys7HA/cAMd69PVZC73+fuE9x9Qv/+/bsk2K62cO1OACalMUEv7lZAn56F1IY4B7224eDRofaSe8yM8049hW/94zgW3T6Vuz9wNqXFce6at5ILvvEUsx5cxC8Xb6ThYHgLFeYqM7vOzN4wsxYzm9DBeR0uxpk2StBFRPLL0TnoEUnQk7ZZ61ZgtLT2BRa06YtUchiqS6sGcOHp+lvhWMLqQX8ZGGlmw4HNwEzgxuQTzKwS+DVwk7uvznyImfPc6u0M7t2dyj7pXbBiYFlxqD3o6+oPcNEZ2fmliRyfkqI4MydWMnNiJau37eXXSzfz++Vb+NKc5dz+m9d53xn9uHLsIKZWDaCkSFMe0uB14APAj9o7IWkxzktJfCn6spnNdfcVaY8mGOKuBF1EJE9EbRX3NnPQj/agJw9xl9B9bfqZYYeQFUL5S9ndm83s08CfgQLgQXd/w8w+Ebx+L3AH0Bf4r2CIdLO7t9tTlK0ONR/h+TU7+MC5g9M+FLyiVzG1ISXoBw43s33vIYb16xnK9SU8Zwwo5bYrRvOVaaN4dVMDv391C394rZb5K+sojMeYPKIvl4wu55LR5QxN85dS+cLdVwLHajOOLsYZnNu6GGf6E/TWHvS+fdNetIiIRFCEh7gnz0G3AiXokn1C68py93nAvDbH7k16fAtwS6bjyrSXanZy4PARpowekPayB/Yq5pWNu9Nebmesrz8AwKl9lYDlKzNj/NDejB/am69NP5OlG3Yx77WtPPNmHbPnvsHsuW8wsryES0aXc/Hocs479RS6aWnPdEq1GOekVCee9FoerQl6n/RN0xGR/GRmfYDHgGHAOuCDSbv6JJ83DbiHREfP/e5+97Heb2ZfJbGu0RHgM+7+ZzMrBZ5LKnoI8DN3/xczuxn4dxKjPQG+7+73p7G62Stii8T1TFokzkhaxV096JKFNNY0ZE+vqqO4W4zJp6W/52lgWTE79x+msekIxd0y24CuqdsHwHD1oAsQixkThvVhwrA+3PEPVdRs38fTq+p45s06HnxhLT96toaSojjnDzuFyaf1ZfKIflQNKqMglr9zxcxsPjAwxUu3u/sTnSkixbGUi3G6+33AfQATJkw4/qX46+s5WFxM9276Q0hETtptwFPufnewdsZtwFeSTzjGFJ6U7zezKhJTKs8CBgHzzewMd98LjE8qewmJKZatHnP3T3dVZbNW1OagJw1xb3FPWiROn0uSfZSgh8jdeXLFNt5zWr8uSaArerdutdaY8UT59c0NFBbEGFlemtHrSnYY0b+EEf1LuOXvRrC3sYnn/7aD59fsYEFNPc+8uR2A0uI4k4b34YIRfblgRF9GDywlnkc97O4+9SSL6NRinGmxYwebGxs5vUsKF5E8MwO4KHj8MPBX2iTodDyFp733zwAedfdDwFozWxOUs6C1UDMbCZTzzh51SeXoEPdo9KD37lHIGQNKGF1Ryptb977dg64EXbKQEvQQLVm/i827D/KFy87okvJbh5evr9+f8QT9tc0NjK4opTCePwmVnJjS4m5ccXYFV5xdAcC2PY0srKlnYU09C96qZ/7KOgCKu8U4e3CvYNj8KYyv7M2gXtrGrwPHXIwzbXbsoB6UoItIOgxw91oAd681s/IU53Q0hae99w8GFrZ5z+A25d5Aosc8eSTRtWb2PmA18Dl334hEbpG4wniMv3zu/QC8VbePI64h7pK9lKCH6LfLNlPcLcZlZ6UaxXry3k7QD3RJ+e1pbDrC0g27mHl+du5LL+EaUFbMjPGDmTE+8XdTbcNBFq3dybKNu1m2cTcPL1jPj59bC0D/0iLGD+3NuCG9qBpUxuiBZVTkQdJuZtcA3wP6A38ws2XufrmZDSIxF3N6e4txpjOO6upq7rzzTpYAdby9aN3s2bOprq5O56VEJId0NIWns0WkOHas6Tmdec9M4Kak578DfuHuh4KFjB8GLklZ+Mmu5ZFtWnvQIzIHPdk7VnFvu82aSBbQXRuSxqYj/O7VWi6tGthl2071LymiR2EB6+r3d0n57VnwVj2NTS28f5S2WJOTV9Gr+zsS9sPNLays3XM0YX91426eXLHt6PllxXFGV5Rx5sBSRleUMXpgKaMGltKjMHeaO3f/DfCbFMe3ANOTnr9rMc50qq6uTiTiQ4bwyubNvLPTSUQktY6m8JjZNjOrCHq/K0h8/9dWR1N42nt/h9N+zGwcEHf3JUlx1ied/2Pgmx3U6eTW8sg2R+egR+8L8XjMsNbvXgoKww1G5ATkzl+sWeaJZZtpONjEhyZ13besZsapfXtmvAf9vmdr6F9axOQR2nJJ0q8wHmPc0N6MG9qbWcGxPY1NrN66l5Vb97Kqdg+rtu5lzpJN7D98BEj8/VDZpwen9S/htP5auDCt3KGuju1hxyEiuWIuMAu4O/iZalHMjqbwtPf+ucAjZvZtEovEjQQWJZV5A/CL5Iu0JvrB06uAlSdVs1zSOnQ8InPQkxXEYnSzxOe/hrhLNlKCHgJ356EX1zN6YCkTh3fttkTD+vbgzW17u/QayRbW1LOgpp47rqzK+Mrxkr/KirsdXSW+VUuLs3n3QVYGCfub2/byVt0+XlizI8RIc9CePdDUxDmXXRZ2JCKSG+4GHjezjwEbgOsAjmMKT8r3u/sbZvY4iYXkmoFb3f1I0nU/SNIIpMBnzOyq4PydwM1pr222KhkAo6bDkPPDjuRd4jEjTvCr1RB3yUK6a0Pw9Ko6Vtbu4VvXju3yubKn9u3J/JXbONLiGdmy6jtPrqa8tIgbu3BkgEhnxGLG0D49GNqnxzvWeTjS4sTvCjGwXFOXGD16+U03HeNEEZFjC4aVT0lxvFNTeNp7f/DaXUDKTwB3H5Hi2FeBr3Y29rwSL4QbfnHs80IQL0hK0NWDLlkoGksv5pGWFuc781dT2acH15zbdvHQ9Dutf0+ajnhG5qG/+NYOXlq7k09ddJp6zyWy8nlv9S4RJOj015oTIiISvoKYUUhz8EQJumQfJegZ9qulm3h98x4+O2Uk3TKwp3PVoDIAVmzZ0+XX+t5TaxhQVsTMieo9F8kb24PZ5+WpdkISERHJrHgsxgstZ7G2cBRMuSPscESOmxL0DNq1/zB3/3EV51b25ppzur73HGBkeSndCowVtV2boC/ftJsFNfXc8t4R6j0XySfqQRcRkQgpiBn76MF/nHovlJ8Zdjgix00Jeoa4O1+as5w9jU3836vPJpahYbaF8Rinl5d2eQ/6j56tobQozsyJQ499sojkDiXoIiISIfHgb+zCuNIcyU66czPk3v+pYf7Kbdx2xZlHh51nSlVFGW9saeiyPYprGw7yp9e3csOkSkqLNddHJK9s385ugKKisCMRERGhoCBI0DMwlVSkK+jOzYBfLt7IN/+0iivHVvDRC4dl/PoThp3Cjn2HeWt71ywU9+iijbS486FJp3ZJ+SISYdoDXUREIkQ96JLtdOd2IXfngefX8qU5y7nw9L78/w+O6/Jt1VJ5z2l9AVjwVvr3f24+0sKjL2/gfSP7U9m3R9rLF5Foqq6uxsx49tFH2QqYGWZGdXV12KGJiEgeK1CCLllOd24XaTjYxGcfXca//X4F084ayAOzzqcoHs7iaZV9ejC4d3ee/Vv7CXrDgSZ+8Mwa7vrDCt7Y0tDpsp9aVce2PYf40AXqPRfJJ9XV1bg77xsyhBoSX0i6uxJ0EREJVTyWSG+UoEu2iocdQK5pOtLCYy9v5NtPrqbhYBNfvOwMPnnR6aHuvWxmXH7WQH62cD0NB5ro1eOd88TX7tjPjT9eSG1DI90KjAdfWMe3rh3LtecNOWbZP3lhLRW9irl4lBaIEsk7hw7B5s2sDTsOERGRwNEedM1BlyylBD1NahsOMmfxJn7+0ga27mlk0vA+fP3KKsYM7hV2aABcfc4gHnxhLb9+ZRMfuXD40eMbdx7g+h8toLnFeeLWCxnWtye3PrKUL855lXiBMWN8+9vBvbxuJwtrdvL1K6uIqxEUyT/r14M7466+OuxIREREAM1Bl+ynBP0ENRxo4pWNu1i6YTd/fbOO5ZsSw8L/bmQ/vvGBMVw8qjyU+ebtOXtwLyYN78N//fUtrjlnML17FLJtTyM3PfASh5pbePyfJjNqYCkA98+awM0/WcTnH3+VnoVxplYNeFd5R1qcu/6wkn4lhdw4sTLT1RGRKFib6Du/5vOfDzkQERGRhLhWcZcsF1qCbmbTgHuAAuB+d7+7zesWvD4dOADc7O5LMxVfY9MRtu89xPZ9h9i+9xB1expZV3+Amu37qNmxn/X1BwCIGYwd0psvTxvFFWMqGN6vZ6ZCPC5mxu1/fybX/vBFPvzgIqaNGcjDL65jb2MzP/3YpKPJOUBxtwLun3U+/+fHC/nUI0v5yc3nc+Hp/d5R3j3zV7Ns426+e/14uheGM7deREJWU5P4OWJEuHGIiIgENAddsl0oCbqZFQA/AC4FNgEvm9lcd1+RdNoVwMjg3yTgh8HPdjUcbOKJZZs53NxCc4vTdKTl7cfNLTQdaaEpeHyouYX9h5rZd6iZA4ePsO9QM/uDf3saE8fbKu4WY3i/EsYM6sV15w3h3MpTGDu0NyVF2TEQYeyQ3nz/xnO57VfL+daf3uSsQWX85OaJKfdlLymK89BHJjLzvoV8+MFFXH/+UC4eVU6LO08s28y817Zy3XlDmDF+UAg1EZFIqKmhESiuqAg7EhEREUCruEv2CyuznAiscfcaADN7FJgBJCfoM4D/dncHFppZbzOrcPfa9grdsPMAn310WYcXLiyIES8wiuIxehbF6VkYp2dRAaXFcSp6FdOzKE5JUZz+pUX0Lymif2kR/YKf5aVFxEJc7C0dLj9rIFNGl9NwsIk+PQs7HIZ/Ss9CHv+nyXzzz6uYs2QTj7y0AYCehQV8buoZ3HrxaZEaxi8iGbZ2LeuA0TH9ESQiItHQIxjZWVqcHR1oIm2FdecOBjYmPd/Eu3vHU50zGHhHgm5mHwc+DjBo6Kk8/YX3060gFvwz4gWxo0l5PGZKKIF4QYy+JUWdOrdXj25845qz+dr0M/nbtr2YGWcMKKFHoRo9kXxVXV3NnXfeyRSgD/DLoF2dPXu2tlkTEZFQDerdnUdumcSEYX3CDkXkhISVZaXKkv0EzsHd7wPuA5gwYYKP6F9y8tHJu5QUxTmn8pSwwxCRCKiurj6aiJsZiYFOIiIi0fCeNmsniWSTsMYlbgKGJj0fAmw5gXNEREREREREckJYCfrLwEgzG25mhcBMYG6bc+YCH7aEC4CGjuafi4hI5s2ePTvsEERERERyRigJurs3A58G/gysBB539zfM7BNm9ongtHlADbAG+DHwqTBiFRGR9mnOuYikk5n1MbMnzexvwc+U8+vMbJqZvWlma8zstmO938z6mtkzZrbPzL7fpqzzzOy1oKz/DLb6xcyKzOyx4PhLZjas62ouIpIQ2tK77j7P3c9w99Pc/a7g2L3ufm/w2N391uD1s919cVixioiIiEhG3AY85e4jgaeC5++QtF3vFUAVcIOZVR3j/Y3A14EvprjmD0ksONy6ve+04PjHgF3ufjrwHeCbJ107EZFj0N44IiIiIhIVM4CHg8cPA1enOOfodr3ufhho3a633fe7+353f55Eon6UmVUAZe6+INja97+Trplc1hxgSmvvuohIV1GCLiIiIiJRMaB1zaHgZ3mKc9rbirez729b1qZ2yjp6nWB6ZgPQN1UhZvZxM1tsZou3b99+jEuKiLRPm1mLiIiISMaY2XxgYIqXbu9sESmOneh+jx2V1enrtN329wRjERFRgi4iIiIimePuU9t7zcy2mVmFu9cGw8/rUpzW0Va8nXl/27KGtFNW63U2mVkc6AXsPEZ5IiInJacS9CVLluwws/VpKKofsCMN5aRDlGIBxdORKMUC0YonSrEAjAo7gKg6gXY0ar/brqb65rZ8qu/J1vXUdAXSxlxgFnB38POJFOcc3a4X2Exiu94bj+P9RwWJ/N5gS9+XgA8D32tT1gLgH4Gng3nqHTrOdjSf7jlQfXOd6nt8Uraj1ol2Ju+Y2WJ3nxB2HBCtWEDxdCRKsUC04olSLBC9eLJZvv23VH1zWz7VN6p1NbO+wONAJbABuM7dd5rZIOB+d58enDcd+C5QADzYuiNQe+8PXlsHlAGFwG7gMndfYWYTgIeA7sAfgX92dzezYuCnwDkkes5nuntNmusbyd9DV1F9c5vqmx451YMuIiIiItnL3euBKSmObwGmJz2fB8zr7PuD14a1c3wxMCbF8Ubguk6GLiKSFlrFXURERERERCQClKCndl/YASSJUiygeDoSpVggWvFEKRaIXjzZLN/+W6q+uS2f6ptPdY2yfPs9qL65TfVNA81BFxEREREREYkA9aCLiIiIiIiIRIASdBEREREREZEIUIJ+DGb2RTNzM+sXYgz/bmarzGy5mf3GzHqHFMc0M3vTzNaY2W1hxBDEMdTMnjGzlWb2hpl9NqxYkmIqMLNXzOz3EYilt5nNCe6ZlWY2OeR4Phf8nl43s18E29Zk8voPmlmdmb2edKyPmT1pZn8Lfp6SyZhyQVTag66Sb/dNe+1qrtbZzIrNbJGZvRrU987geE7Wt1Xbz6pcr2/UqR3NrXtO7Wjut6OZakOVoHfAzIYCl5LYRzNMTwJj3H0ssBr4aqYDMLMC4AfAFUAVcIOZVWU6jkAz8AV3PxO4ALg1xFhafRZYGXIMre4B/uTuo4FxhBiXmQ0GPgNMcPcxJParnZnhMB4CprU5dhvwlLuPBJ4KnksnRaw96CoPkV/3TXvtaq7W+RBwibuPA8YD08zsAnK3vq3aflblen0jS+1oTt5zakdzvx3NSBuqBL1j3wG+DIS6kp67/8Xdm4OnC4EhIYQxEVjj7jXufhh4FJgRQhy4e627Lw0e7yXxP8rgMGIBMLMhwN8D94cVQ1IsZcD7gAcA3P2wu+8ONyriQHcziwM9gC2ZvLi7PwvsbHN4BvBw8Phh4OpMxpQDItMedJV8u286aFdzss6esC942i345+RofaHdz6qcrW8WUDuaY/ec2tHcbkcz2YYqQW+HmV0FbHb3V8OOpY2PAn8M4bqDgY1JzzcRYlLcysyGAecAL4UYxndJfJHTEmIMrUYA24GfBENw7jeznmEF4+6bgf8gMQqlFmhw97+EFU+SAe5eC4kPVKA85HiyTSTbgwzIi/umTbuas3UOhiouA+qAJ909p+tL6s+qXK5v1KkdzeF7Tu1oTtY3Y21oXifoZjY/mBfb9t8M4HbgjojE0nrO7SSGz/w8U3Elh5jiWKgjC8ysBPgV8C/uviekGK4E6tx9SRjXTyEOnAv80N3PAfYT4tCiYC7ODGA4MAjoaWYfCiseSZvItQeSHlFoVzPF3Y+4+3gSo9ImmtmYsGPqKhH8rBK1ozlL7WjuyXQbGs/ERaLK3aemOm5mZ5NIKF41M0jcdEvNbKK7b81kLEkxzQKuBKZ4OJvXbwKGJj0fQoaHKiczs24kGr+fu/uvw4oDuBC4ysymA8VAmZn9zN3DSkI3AZuCbzAB5hDu3J+pwFp33w5gZr8G3gP8LMSYALaZWYW715pZBYlvfqXzItUeZFBO3zfttKs5XWcAd99tZn8lMVc2V+ub8rOK3K1vNlA7moP3nNrRnG1HM9qG5nUPenvc/TV3L3f3Ye4+jEQjem5XJefHYmbTgK8AV7n7gTBiAF4GRprZcDMrJLHQ19wwArHEtyYPACvd/dthxNDK3b/q7kOC+2Qm8HSIyTnBPbrRzEYFh6YAK8KKh8TQ9gvMrEfwe5tCNBbTmwvMCh7PAp4IMZZsFJn2IMNy9r7poF3NyTqbWX8LdkQxs+4kvkxcRY7Wt4PPqpysb5ZQO5pj95za0dxtRzPdhlo4nbHZxczWkViFekdI118DFAH1waGF7v6JEOKYTmL+RQHwoLvflekYgjjeCzwHvMbb80C+5u7zwoinlZldBHzR3a8MOY7xJBawKARqgI+4+64Q47kTuJ7E9IxXgFvc/VAGr/8L4CKgH7ANmA38FngcqCTxJcJ17t52IRvpQFTag66Sb/dNe+0qifmTOVdnMxtLYkGfAhKdFY+7+7+aWV9ysL7Jkj+r8qG+UaZ2NLfuObWj+dGOZqINVYIuIiIiIiIiEgEa4i4iIiIiIiISAUrQRURERERERCJACbqIiIiIiIhIBChBFxEREREREYkAJegiIiIiIiIiEaAEXURERERERCQClKCLiIiIiIiIRIASdMlJZnaVmc1pc+yTZvafYcUkIhJlZvYeM7sz7DhERLKV2lFJB3P3sGMQSTszew24wd1fTzp2GfBld58aXmQiIiIiIiKpqQddco6ZjQNi7v66mZ1qZp8MXuoG6BspEZEUzOyXZvZejUASETkxakclHeJhByDSBcYDS4LHlwIjg8dVwKuhRCQiEn1jgNeA54Eb2rz2FnBtxiMSEckuakflpKkHXXJRDCgxswLgA0CpmXUHbgYeCTMwEZEoMrNiEqOMhqERSCIix03tqKSLEnTJRfOAEcAy4F7gLGAxcJ+7Lw0zMBGRiDoLWEEnRiCZ2RAze8bMPmdmj2U8UhGRaFI7KmmhIe6Sc9x9G4nGsdXcsGIREckSZwPLefcIpM1JI5BuCs4dB/zW3e8xs5+HEayISASpHZW0UA+6iIiItP5h2ZkRSOOAPwePNVxTRCRB7aikhXrQRURE8py7fyHp6bFGIJ0OrDazfsDWLg1MRCRLqB2VdNE+6CIiIiIiIiIRoCHuIiIiIiIiIhGgBF1EREREREQkApSgi4iIiIiIiESAEnQRERERERGRCFCCLiIiIiIiIhIBStBFREREREREIkAJuoiIiIiIiEgEKEEXERERERERiYD/BYF3Ta3A8vVLAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(ncols=3, nrows=1, figsize=(14, 4))\n", "ax[0].plot(w, sol_maxent[0].A_opt)\n", "ax[0].set_xlim(-5, 10)\n", "ax[0].set_xlabel(r'$\\omega$')\n", "ax[0].set_ylabel(r'$-\\frac{1}{\\pi} \\mathrm{Im} \\Sigma_R(\\omega)$')\n", "ax[1].plot(wn, siw_cont.real, ls='None', marker='+', color='black')\n", "ax[1].plot(wn, siw_cont.imag, ls='None', marker='x', color='black')\n", "ax[1].plot(wn, sol_maxent[0].backtransform.real, color='red')\n", "ax[1].plot(wn, sol_maxent[0].backtransform.imag, color='blue')\n", "ax[1].set_xlabel(r'$i\\omega_n$')\n", "ax[1].set_ylabel(r'$\\Sigma(i\\omega_n)$')\n", "ax[2].plot(wn, (siw_cont - sol_maxent[0].backtransform).real)\n", "ax[2].plot(wn, (siw_cont - sol_maxent[0].backtransform).imag)\n", "ax[2].fill_between(wn, -err_cont, err_cont, alpha=0.4)\n", "ax[2].set_xlabel(r'$i\\omega_n$')\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perform the analytic continuation by Pade. The selected `indices_pade` represent a reasonable choice, but are by no means unique. Feel free to experiment with their number and spacing. Keep in mind, however, that the calculation time steeply increases when using more than approximately 25 data points on the imaginary axis.\n", "\n", "We plot the imaginary-axis data that were used for the calculation of the Pade coefficients. Also, we plot the Pade-interpolation on a fine grid on the imaginary axis. If there are pole-zero pairs along the imaginary axis as a consequence of noise, these are usually visible in such a plot. It may then be indicated to choose a different set of Matsubara frequencies, or get better data." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 20 28 36 44 52 60 68 76 84 92] (23,)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXzU1b3/8ddntixkYUmACAgSRVETBaMi7oqK6E+s2l5Lrdh6S7XFamvv1dbb9nZXrLZWvFLcoBWttm5oFUWtoCJEEAgCEggEEpYkk2WSyUxmPb8/ZoIxJhBIyGyf5+ORR2bmezLfD1/Hd07O93zPV4wxKKWUSn6WWBeglFKqf2jgK6VUitDAV0qpFKGBr5RSKUIDXymlUoQt1gUcSF5enhkzZkysy1BKqYSxZs0apzEmv6ttcR34Y8aMYfXq1bEuQymlEoaI7Oxumw7pKKVUitDAV0qpFKGBr5RSKUIDXymlUkSfBL6ITBWRLSKyTUTu7mK7iMifo9vLRGRiX+xXKaVUz/U68EXECjwCXA6cCHxdRE7s1Oxy4Ljo1yzg0d7uVyml1KHpix7+GcA2Y8x2Y4wf+DswvVOb6cBfTcRKYKCIFPTBvpVSSvVQXwT+CKCqw/Pq6GuH2gYAEZklIqtFZPU+574+KE8ppRT0TeBLF691XmS/J20iLxoz3xhTYowpyczO7HVxSimlIvoi8KuBUR2ejwT2HEabLwkT7nVxSimlIvoi8D8GjhORY0TEAVwPLO7UZjFwY3S2ziTAZYzZe7A3DplQH5SnlFIK+mAtHWNMUERmA28CVuBJY8xGEbklun0e8DowDdgGeIBv9eS9w0Z7+Eop1Vcknu9pO+rEUaZqU9XBGyqllAJARNYYY0q62hbXV9pqD18ppfqOBr5SSqUIDXyllEoRGvhKKZUiNPCVUipFaOArpVSK0MBXSqkUoYGvlFIpQgNfKaVSRHwHPmEC4UCsy1BKqaQQ14EP4Al4Yl2CUkolhbgPfG/QG+sSlFIqKcR94LcGWmNdglJKJYW4D3wd0lFKqb4R94HfGtQevlJK9YW4D3zt4SulVN+I/8APauArpVRfiP/A1x6+Ukr1CQ18pZRKEXEd+ILoSVullOoj8R34ItrDV0qpPhLXgW8Ri154pZRSfSSuA98q1v09/BUVTuYtq4hxRUoplbjiOvAJG1prN1C28i1mP7OW4pG5sa5IKaUSVlwHvi3kw91Qwbgl32DBJYbJhXmxLkkppRJWXAe+FXCL4CBEcWBDrMtRSqmEFteBbzHgtljwY6XMXhTrcpRSKqHFdeAbRzbutEzKpy7ipqXCigpnrEtSSqmEFdeB73Bk0GpCFJ15CXNnTKCs2hXrkpRSKmHZYl3AgVjEQsiE8Aa9TC7M05O2SinVC3Hdw7eKFdC7XimlVF+I68C3SKS8lkBLjCtRSqnEF9eBv7+H79cevlJK9VZcB7728JVSqu8kRODrGL5SSvVeXAe+1RIZ0nH73TGuRCmlEl9cB357D98d0MBXSqneiuvAbz9pqz18pZTqvV4FvogMFpGlIrI1+n1QF21Gici/RWSziGwUkdsPZR8Ztgzt4SulVB/obQ//buAdY8xxwDvR550FgTuNMeOBScD3ReTEnu4g256tga+UUn2gt4E/HVgYfbwQuLpzA2PMXmPMJ9HHLcBmYERPdzDAMUCHdJRSqg/0NvCHGWP2QiTYgaEHaiwiY4AJwKoDtJklIqtFZHVdXR1Z9izt4SulVB846OJpIvI2MLyLTfccyo5EJAt4AbjDGNPcXTtjzHxgPkBJSYnRwFdKqb5x0MA3xkzpbpuI1IhIgTFmr4gUALXdtLMTCftFxpgXD6XALEcWNZ6aQ/kRpZRSXejtkM5iYGb08Uzglc4NRESAJ4DNxpgHD3UH2sNXSqm+0dvAvxe4RES2ApdEnyMiR4nI69E2ZwPfBC4SkXXRr2k93cEAu560VUqpvtCrG6AYY+qBi7t4fQ8wLfr4A0AOdx/Zjmw8QQ+hcGj/UgtKKaUOXVzf8QoiPXyA1mArOY6cGFejlFJxoKoUKt+HMedGnle+T3j02dT5XYzIlq4m2QAJEPjZjmwgsia+Br5SKqV0CnazYzkNjkwql/+enVbDzrVz2WW3sdNmpWrbU7RZhOFZ0u11TnEf+O09/JZACwUUxLgapZQ6QjqEuy8UYNe6p6jc9iaVNqGy7FEq7VZ22Gy0WC0wbCAANmMYFQhydDDIJG8bowMB7j/ALuI+8LPt0R6+romvlEoG0WA3o8+hzt9E5falVBJiR/liKq0WKrc8zh6blbAI5EeCfWgwyDGBINNaWxkTCDEmGGJMIEBBGKwIhINgsQLCHDDd7TruA3+AI9rD9+tdr5RSCSQa7OHRZ7O7rZ6K7UupMH4qdiylwmZh57YnabV8PlEyY0A6owNBinw+/p87yJhAIPoVItNig/Zgtzpg6r3grf/CGH7745r7J+3prqS4D3zt4Sul4lrHYPc6qdjxNtuMj+073mabzcKO6Nh6u6FpNgoDAaa3+BgTCDIm4OeYQJihxmAxZn9PfX+v/bSb4JSvR364PdhHnfHFGjo8391i9nVXatwH/v4xfO3hK6ViqUOw72mrZ+v2t6I99rep6CLYh6XZONYfoKTNx7H+AGMDfgr9IbJFoHOwWx1weTe99o7h3jnoD1HcB36WIwvQHr5Sqh9Fw909soSt7mrKt7xE+b61lNutbO00FDM8zUahP8DpbT4K/QEKA37GdhnsoQMPxxyg195X4j7wM22ZCKI9fKVU34sGe2j02VR5aynfvpRy00b5zmWU263s3r5gf9PszHTG+f1c1dLKuECA4/yRHntWHAZ7d+I+8EWELHuW9vCVUoevw5RHb8hH+dbX2Gx8fLb1NcrtVrZtexJvtNduMYYxNgtFPh/XtrgZ5w8wzu9neCiEIGC1E+/B3p24D3yIDOvoAmpKqY7mLaugeGQukwvz9r9WtvItvOXLOPPC6QC0bn+Xzwiyee0TbLZb2PTZY2y32yJTHoHcDAfH+wNc29IaDXYfhYEQ6WLp1GsnEu4TbjikE6jxJmECX4d0lFIdFY/MZfYza1lwiaE4sIF1zYaWDX9ka5qFF159js0OOzttVowIDMoiPxhkvD/Axa0exvv9nOgLMtwY5AvBHgZrWs967XEc7N1JiMDPtmdr4Cul9g/NeEadQZpnJ98a8xwL1mxmU5qd3XYbFAwGoCAYZLzPzxXuSLCPDwbJD4YOb2YMJGS4dyUhAj8nLYc97m6vJVBKJZsOY+7BcIiKra/xqfGyoXwxGxw2tlU8tX9Y5qg0Oyf7fFzX0sqJgUjQD0L44oVK96dUsHcnMQLfkcMW/5ZYl6GUOpKqSjE7lrPX5mDDR39gg93Chk3z2eyw443Ob8/JSKPI5+PCVg/FPj8n+XwMDocxCH7sVJ/5cwZl+VM+2LuTMIHf7O/2NrhKqTh1sBOrrUEvG7e+yvpQK2U736HMYaPBaoW8XBxhwwl+P9e0uDnZ56PIF+TocHj/mHvYRIbcwxYH1ok3UJ53OTctFebOmMDkUdH9pWiwdydhAr810EowHMRmSYiSlVJ88cTqyf4ylru81G15jE1pVuYseYFtHWbMjLFZOMfjpcgXoCgQZJzPj73zmPu0z4dmXllbzcTwRkafdhmMOoNiYG6+k7Jq1xd+wajPJUR65qRF1sFv8bcwKH1QjKtRSnUrOvbuGzWJHZ69NFS+y1UntPDw2lVsTLNHlvbNzyU7FKbI5+OiVg+n+HwU+QLkEr2AqYdz278y6gzgmi/sfnJhnob9ASRE4LffBEUDX6k4VVUK65+Btc/wqU34/rAhkaEZImu2H2MTLmttpcgX4FR/ZCVIS+fee8eQ1zH3IyIhAr/9Tlc6jq9UHKkqJbBjGZUWYUvpw1RaDNbsNP5v0ECOCgS5v97Jsf4AowIhLAhWwI+V6jN/jqUnJ1ZVn0uswPdp4CvV7zrdiams/GXWBJtZXfUe6x022iwWGJKDxZj94/E/dLmZ2hYiHA7jx8bOM3/OsVl+yu1FemI1hhIi8NuHdJoDGvhK9bUDzaQ55YQxrFv2K1Y7LKzeNJ8NaXb8IogxjLPAtS2tnOzzc3wwxBh/gFabjQ3jL+OcC2eDCB//+xUyxp1P8aRLAfTEaowlROBrD1+pI6fzTJp3mlqorFhAaYaDTzal4R86EIsxnOAPcH2zm5K2Nia2+TudZL0PvPUMHHMu53bosZ9545d773piNXYSI/DTdAxfqSOiqpRjd73JLSfV8tc1b/BxhiNysnVwDsf6/Xyt2c1ZPj8TvD6yxUKPT7KquBT3gT9vWQVFI3KwW+z719NZURH5k/CW8wtjXJ1SCaLDOHxbyM/HW15ghb+Bj2pKqbBHYmBwhoNJ3jbO8vo4y+dnWPAQl/9VcS/uA7/9z82MY9Jo3vkBZYGTmB096aOUOojodMm9ZX9nebqd5RvnUZqWRptFcBjDacEg01tamOT1M9YfxM7nM2mGtc+k0SmSSSPuA39yYR4LLjH8dEMTza5axpV9gwVTF1GsY4BKda2qlOCOZaw3PpaXPcXydBvbRuQDMDIQ5JoWN+d5vZzW5iddLISNwW+sVJ35y+5n0qikEPeBD1Ac2EBuOESzVXAQojiwAbg01mUpFT+qSnFVvM37QRfLy1/kw3QHzVYLtuwMJrb5+HF9I+d62zgmLJG7NoWD+9d9/3jTVp1JkyISIvDL7EVkhcFlteLHSrm9iOJYF6VUP+pu6mT1ljdoHB7i3co3WZNmJyTC4HQ7F3g8nO+JjMVnh8ORdeAnfLPLuzWdWfLl/elMmuQU94G/osLJ7KVCyUmTaPZuo3zqw5E/N/Od+oFUKaP9XNZTU8JkeT7g+cZq1jZ8xOY0O+yDQovwbVczF7a2cVIwhKV9uuTlf+h6Jo2Ow6ekuA/8smoXc2dM4N26VWyq3E7xpEv1z02VUsK7VjJg+0tcecJufvrpGnY5Iv/bFpswdzQ0cnGrjzHh8Odz4qfN0emSqktxH/jtUy9Xu3Jo8bdgjNE/N1XSC+9aydrPXmSJby/v1K2hzmrFZgwloSA3Ops539PGcEOHkL9fQ14dVNwHfrvctFzCJow74N6/1IJSySS8ayVlW15iSdteltauptZmJS1sOLctsozwuV4fA8LsX4RsW3R9Gg151VMJFfgATb4mDXyVNMyuVXy65SWW+PbxVk0p+2xWHMZwjs/PZQ2tXODxkSmyf+rkARchU+ogEibwB6YNBMDlczEqe1SMq1Hq8Jldq9hU/jJvttXwVs1KdtsiwzVn+/38oKGVCz0+suSLNwPRqZOqLyRc4Df5mmJciVKHZ+eWV/nX+sf4V/NWdtlt2Ixhkt/PLY0eLvK0kdPdHZ906qTqIwkT+O1DOi6fK8aVKNW1rubKf/DBi7xf8U8+zXBS5t2LGMMZwSA3N7m4yONjIHQb8kr1tYQJfO3hq3jXPlf+8SlBnE2v80zTdtb5dhISYZwrwI/crUxztzIsFAIEbOka8qpf9SrwRWQw8BwwBqgEvmaMaeymrRVYDew2xlx5qPtqP1GrPXwVl6pKGbtrCVefsI0fbVpNvc3K0GCIG90ernC7OT4QAosFDJHe/IQbIle9asirftTbHv7dwDvGmHtF5O7o87u6aXs7sBnIOZwd2Sw2sh3Z2sNX8aOqlPCO5awItfDclmdZnu7AAOf4/fyHs4XJXj92iyUyZGNL0968irneBv504ILo44XAe3QR+CIyErgC+C3wo8Pd2cC0gRr4Krai68q7HAN4eeV9/H1AOtV2G4MdNr7lauaaFg8FwXB0rryNnafrXHkVP3ob+MOMMXsBjDF7RWRoN+3+BPw3cNAJ9CIyC5gFcPTRR39h28C0gXqbQxU7VaVsW/QVnslK47UBGXgHZjGxrY3bGl1M8fqw7Z8rr8sMq/h00MAXkbeB4V1suqcnOxCRK4FaY8waEbngYO2NMfOB+QAlJSWm47bctFwa27o8RaDUERPatZLlm55lUcM6VhUMxhE2XNHqYUZLKyf4A9GlDR5glc6VV3HuoIFvjJnS3TYRqRGRgmjvvgCo7aLZ2cBVIjINSAdyRORpY8wNh1rswLSB7HDtONQfU+rQRdeXf7ltD8/ufpfdNivDgiFud3u4ttnNILHtv3G3zpVXiaK3QzqLgZnAvdHvr3RuYIz5CfATgGgP/8eHE/YQCXydpaOOmOj4fIXAM+sf5dXMNLwWCxODQX5U38BFXj+2026E3FE6Jq8SUm8D/17geRG5GdgFfBVARI4CHjfGTOvl+39BTloO7oCbQDiA3WLvy7dWqSoa8iZ9MB+993MWZKfzUUY6jgHpXOFuZUZzKycEQ59fHHXKDA16lbB6FfjGmHrg4i5e3wN8KeyNMe8RmclzWNovvmr2NTMkY8jhvo1KYV+4GraqlMDCq3g93crC3Gy2Dh1IfjDIDxpcXNfqZVAopOvLq6SSMFfawhcXUNPAV4ej/WrYRy7ysLnijywqGEytzcqx/gC/cTYyze3BbnXAVF1fXiWfhAr8jkskK3XIqko5ZtcbXH78Fn5Yvp5Wi4UzAwH+19nAOQEQvTBKJbmECnxdT0cdsugY/S6LhcfXPcKrA9IxwGUeLze5mjneH8JSeAFc8BMNeZX0NPBV8opeKPVYdjpLBmRgz0zna81ubnS5GRr6/GrY8uNupVjDXqWAhAr8QemDAGhoa4hxJSquVZWyacvLPFa3krcLBpMRDnOjy83MllYGh0JdXw2b79T58irpJVTgZ9gyyLBl6NW2qlvrP32W+R/8guUZaWSFw8xq8XCDqyV6odT9ejWsSmkJFfgAg9MHaw9ffcnmTf9g7sYnWe6pZqDDxm0NTVzv9pAz4ZtfuFBKr4ZVqSzhAn9Q2iDt4auIqlK2l7/K3OZNLG0uJzsU5vaWVma0eMkMBfRCKaU6SbjAH5wxmDpPXazLULESnXVTZbXy6LpH+FdmGunG8N1mNze6XOQYC+jyB0p1KeECf1DaILY0bIl1GSoWqkqp/dvVPJqTzstZmVgz0rjR1cK3XG4GAxiL9uqVOoCEC/zB6YNpbGvEGIOIxLoc1R+qSvFsf5enalawsGAQARGubWllVrObocGQ3gBcqR5KyMD3h/14gh4G2AfEuhzVx76w1g0Q3PkRL7xwPY/mDqDeZuUyr5/bG5sYZay6/IFShyjhAn//XHxvgwZ+Empf6+apKWFczW8wZ99H7BySw8S2Nv5cW09x0dehSMfnlTociRv4vgZGMSrG1ai+NtmxnT8f81ceWr+KjzPSODoQ5MHGFqZ4PIiOzyvVKwkX+EPSI6tkNnh1Ln6yadr+Lg+/MYt/DEhnoMPGT5wNXNviJa1EZ90o1RcSKvDnLatgRF7kNreNvshc/BUVkaskbzm/MJalqV4I7vyIf254kocbVtM6IJ1vNLdwS5OL7DD4sVOWN23/lbFKqcOXUIFfPDKX7z/7GYyChs9eoaw+i9lLhbkzJsS6NHWY1mx4mt+v/C1bHDbObPPx3w0tjPW1IRY7lpIbKM+7XNe6UaqPJFTgTy7MY+EUO/+5OUz9jmWMW/M6C6YuoliDIOE4ty1lzrqHeaN1BwUWeKCmjku8fjYVXM3uoccw+rTLYNQZutaNUn0ooQIfoDiwgUGhME1WCw5CFAc2APrnfqIwxvDG6rn8bsM8vBbhu82t3NzcSkYoCFYHJ11+y5fG6XWtG6X6RsIFfpm9iEGhME6rFT9Wyu1FFMe6KNUjzoql/OaTP/GOZxfFgSC/cTo5Jmh0KQSl+klCBf6KCiezlwpFJ06g3r+H8lMf0fHdeBdd+2aJ38lvdy7GYxF+1NTCjS1erGGjSyEo1Y8SKvDLql3MnTGBpbXjeXfXXoonXarju/GsqpSGv03ntwMzeWtAJicHg/ymzkmh9uqViomECvz2qZfrWvJpbGskEA7o+G48ivbql9au4TfDB9FssXB7g4ubWlqxGe3VKxUrCRX47fIy8jAYGrwNDBswLNblqI6qSmn623R+l5vJG1mZjA+FeWyfk3FhC0x7QNe+USqGEjbwAZxtTg38eBHt1b9b9wm/Gj4Il8XC9xubublwOvYTRmvIKxUHEjvwPU4YEuNiUlDnFS2pKqVx4VXMGZjJa9kDOD4U5i/7nBwftsCpN2jQKxUnEjLw8zPyAXB6nTGuJDW1r2i54BJDcWADL1WW8ueCwTRaLdzS1MyssdqrVyoeJWTgD8mIdOvrvHqrw1iYXJjHgksMR715A/cMyWJx9gCODYd5pLaeE0OivXql4lRCBr7D6iA3LVd7+DEUanmbb4wYwj6blZubWvje2KtwaK9eqbiWkIEPkJeeR723PtZlpJzgzo/4y7pHmN9UxnDgqb1OTvSF+Cz/Sl3RUqk4l7iBn5mnQzr9rKr8X9z93p2Updm5osXLjGNupfj4yHIXesWzUvEvcQM/I491tetiXUZqqCrlX58u5Fe1H2K1W5lT6+Qyjw/LKcC5d+qKlkoliMQN/PQ8nF4nxhhEJNblJC1f5Yfc96+Z/CMrg4ltfu6td1EQ8Eeulh1z7v52esWzUvEvYQM/PzMfX8hHs7+Z3LTcWJeTlKrK/8WdH/2CzVkZfLvJxW1Nbmy6Bo5SCSthA39YZuQK21pPrQb+EfDOJ/P42fqHwcDDdfVc0OYDa5qugaNUAkvcwI8uqVDjqeG4QcfFuJrkEdi5gofW/pmFro2cFAjyh9o6RgYNFF4AF/xEw16pBJawgT88czgANa01Ma4keTRUvMOdb3+P1ekOrm9p5b8a3TjCgC1Nw16pJNCrwBeRwcBzwBigEviaMaaxi3YDgceBkwEDfNsY81Fv9p2XmYcg1Hg08HutqpTPtrzMD/YupcFh5/e1Tq70+HTNeqWSTG97+HcD7xhj7hWRu6PP7+qi3UPAEmPMdSLiADJ7uV/sFjt5GXka+L1VVcqS57/KzwZnkRs2LKxr4iSfT9esVyoJ9TbwpwMXRB8vBN6jU+CLSA5wHnATgDHGD/h7uV8gcuJ2X+u+vnirlBQ2YeZ+8hCP5eUwoa2NB2sbyZtwg/bqlUpSvQ38YcaYvQDGmL0iMrSLNmOBOuApETkFWAPcboxp7eoNRWQWMAvg6KOPPuDOhw8Yzg7Xjl6Un7rcO5Zx9+p7Weap5lq3l586G3Bor16ppHbQwBeRt4HhXWy65xD2MRG4zRizSkQeIjL087OuGhtj5gPzAUpKSsyB3njYgGGs3Luyh2WodnvKX+f7y+9kh83KT5vcXH/2L5C2Bu3VK5XkDhr4xpgp3W0TkRoRKYj27guA2i6aVQPVxphV0ef/JBL4vTYscxjugBu3302WI6sv3jK5VZWycctLzN7zFm1WC4/uq+UsXxDaGuDcO2NdnVLqCLP08ucXAzOjj2cCr3RuYIzZB1SJyPHRly4GNvVyv8xbVoHLHTn3W+uJ/J5ZUeFk3rKK3r51cqoq5b3nruNbVYuxB7z8raYhEvadlkhQSiWv3o7h3ws8LyI3A7uArwKIyFHA48aYadF2twGLojN0tgPf6uV+KR6Zy/deaIJhsG/VXNy5U5m9VJg7Y0Jv3zopdL4N4aL185mTl8N4v5+5tQ3knaonZ5VKNb0KfGNMPZEee+fX9wDTOjxfB5T0Zl+dTS7M44GzcrljO+zZ8BxXuv/GgqmLKNYFvIDPb0P45JQQb+57iqebN3G+x8e9zgayLHY9OatUCkrYK20BzjNVWIxhr82KgxDFgQ2A3oQDIr8QH58S4OlPfsCbWRlc72rlumNvJ6soqL16pVJUQgf+ZscpDAuGqbbb8WOl3F5EcayLihOegIe/VD3EiqwMftjQyEyXB2t2UE/OKpXCenvSNmZWVDi5aakwMGcce4aMoXzqIm5aKqyo0PvcNm1/l++8cAUrvXv5WZ2Lm1weAlgpsxfFujSlVAwlbA+/rNrF3BkTeGNfESt2r6B40qV61yVg39YlfHfZD6m2WplT10Rh0V1YsvyU620IlUp5CRv4t5xfCECZewS13lp8IV9q33WpqpQd5a8xa8/ruK0W/lJTy0RfEEuWX29DqJQCEjjw243IGgHAHvcejsk9JsbVxEhVKVuf+Qrfyc/FAAtqmzi+izn2Kf0LUSmVPIG/2707ZQN/05aX+W5+Lg5jeKymnrHFM3SOvVLqS5In8Ft2x7iSGKgqpeyzF7ll39tkGXhin5NRxqpz7JVSXUr4wM/PzMdhcbDbnWKBX1XKmmev5Xv5OQwJGZ448RYKxgW0V6+U6lbCB75FLByVdRTV7upYl9KvVm1+ntvycxgeDPF4jZOhxwd0jr1S6oASdh5+RyOzR1LdkjqB/3HZX5m9dykjgiGe3OdkKDZdAE0pdVBJEfhjcsZQ2VyJMQdcPj8prNnwNN9fM4cRfh9P1DaQN+GbMHOxDuMopQ4qaQLfG/Qm/f1t19Wu43trH2BYKMjj+2oYHAxC7kgNe6VUjyRF4I/OHQ3AzuadMa7kyPl043PcuuTb5NmzeKK2mbyw6Fr2SqlDkvAnbSHSwweodFVyZsGZsS3mCNi86R/MKv0VuaEwT+zex9BLfwfeep2Ro5Q6JEkR+MMyh5Fhy6CyuTLWpfS5LQ1b+M6a+8gKh3liXw3DQ0TCXmfkKKUOUVIM6YgIo3NGJ13g79zyKrNev4E0i50nal2MCKHDOEqpw5YUPXyIDOt86vw01mX0mZptbzLrg7swAo/Vuhh1iQ7jKKV6Jyl6+POWVWAN5bOndQ/+kB9I7BuaN7Y1Mqv017gswqP7ahnr834+jKNhr5Q6TEkR+MUjc1myFsImzI5//5KylW8x+5m1FI/MjXVph6x1xzK+9/I1VAfdPOxs5qRAWIdxlFJ9IimGdCYX5vG7kuHcVQmfrVvAZe75CXlDc1/lh9z+1iw2p9n5o7OZ0y/8tQ7jKKX6TFL08AEulRrsxlBht3W4oXl8m7esYv8tGYPhIP/98e9Yle7g1856Lmx16zCOUqpPJUUPH2CT4xTG+oNscTgS5obmxSNzmf3MWp6aEuaFvX/hXc8u7qxv5opWnw7jKKX6XFIE/ooKJ7OXCpNOPovPWjdSPuGRhLh/6+TCPBZcYvj3ylt4aVAWN0dN/cUAAAzcSURBVDe6OWf8jyO3JdRhHKVUH0uKwG+/ofnWtj28v3o1I08tYW5+OCHu37q1/gUeH5TFV1rc3Nbkwhq9B61SSvW1pAj89huay55xAGxt3MrkwjPjO+yrSlm+6Vl+5fyIszw+7nG6CGBlYwIMRSmlElNSBH67cYMigf9Zw2fxvaZOVSkbn7mGO4fmMi4Q4rajbyHtZEOZvSghhqKUUokpqQJ/SMYQCgYUsMEZ3zN0qra+Hr01YZhHap0MHW/g3DspBubmOxNiKEoplXiSKvABivKK2FAXv4Hf2NbIrc4PCCE8WvPlu1VNLszTsFdKHRFJF/jF+cW8tfMtnF4neRnxFZxtlR9w28qfszfQyOOn/5RjmvbpbBylVL9Jmguv2hXlFQHEXS8/tGsld73xbcraarmvtp4JA4/Ti6qUUv0q6QJ//JDxWMUaV+P4xhjuXfMA72amcVdDI1Pcbqh8P9ZlKaVSTNIF/sIP93BU5ljW163f/1pMV86sKmXBa9/m782fcVOzh2+0ePUqWqVUTCTfGP7IXB4tK2CfZwW+ZfexJW0Cs5cKc2dM6P9iqkp5/R9f5cEhOVze2sYPJ/0PtDXouL1SKiaSroc/uTCPH44/loAJsvajPzJuyTdYcImJycyX0s3Pc8/gbEq8bfymrh5LW4OO2yulYibpAh/gOnsbVmMozXDEZuXMqlLK3/kfbq/5N6ODIR6qa8ChwzhKqRhLuiEdgO1pp3GibwGr0jOYhbd/V86sKmXf01dz69CBZALzTrqVnOMDOoyjlIq5pOvhr6hwctNSYexR09iYnsa6Sx7npqWyf935I61l+zvcmpdDq0X4vxonw4MBHcZRSsWFXgW+iAwWkaUisjX6fVA37X4oIhtF5FMReVZE0nuz3wNpXznzujNnEsJQX2Bj7owJlFW7jtQuI6pK8S+fwx1171Npt/Gn2gaOD1t0GEcpFTd6O6RzN/COMeZeEbk7+vyujg1EZATwA+BEY4xXRJ4HrgcW9HLfXWpfOTNsBpOfkc87u97hwQuuOLInbatKCS+8iv8ZNIDSrEx+P/IKJhUO1WEcpVRc6e2QznRgYfTxQuDqbtrZgAwRsQGZwJ5e7vegLGLhoqMv4oPdH+ANeo/szirf50856byRlcntjS6uTBuqwzhKqbjT28AfZozZCxD9PrRzA2PMbuAPwC5gL+AyxrzV3RuKyCwRWS0iq+vq6g67sHnLKiiwn4436OXD3R8CR+gCrKpS/rbvQ57KzeY/mt3c7PbrMI5SKi4dNPBF5O3o2Hvnr+k92UF0XH86cAxwFDBARG7orr0xZr4xpsQYU5Kfn9/Tf8eXFI/MZe7rhoHWbF4ufYCylW8x+5m1FI/MPez3/JKqUp7/59eY49nKFE8bPxkzHZm5WHv2Sqm4dNDAN8ZMMcac3MXXK0CNiBQARL/XdvEWU4Adxpg6Y0wAeBGY3Jf/iK5MLsxj4SUWrqnfy/utVeQs/WafXoBljOGZ9fP59eBszvN4mVNbj3XgKA17pVTc6u2QzmJgZvTxTOCVLtrsAiaJSKaICHAxsLmX++2R4sAGvtrSggFezU7vswuwAjtX8MuXruP39as43+vjwboG7HphlVIqzvV2ls69wPMicjORYP8qgIgcBTxujJlmjFklIv8EPgGCwFpgfi/32yNl9iLGBYVzvW08l5PF6ZbjmNTL9/RUvs+Pl9zM+xlp/Gezh9mT7sHa1qgzcpRSca9XPXxjTL0x5mJjzHHR7w3R1/cYY6Z1aPcLY8wJ0aGgbxpjfL0t/GDaL8Aqn7qIczMvxWW18N3Vy/dfgNXTE7jzllXs/5mmtia+s/IXfJju4GfOBm5vaIyEvc7IUUolgKRcWgE+vwCruDAPd/5E5K3bsA96D/cHhrK6y3q8gmbxyFxmP7OWOec7eah6LrsDrdxb28RlXl3mWCmVWMQYE+saulVSUmJWr17dJ++1ZPnT/E/FvZzR1sYDNS62Tl1E8aRLu2w7b1kFxSNz95/gfeHfj/HQjj8SBv5Q00TeqT/h2Cy/DuMopeKOiKwxxpR0tS1pe/idTZUa6hpdzBkykL/n+PhWYAMQCfwVFU7mL9/OrPPGMrkwb3+v/menutjQ8A9eZDMFYcP/1dQyOmCwZPkjwzhKKZVAUibwy+xFXNvcxpp0Dw8OGUj1rk1csvCn1Awp4Zdrs7n1grHMfmYtv5jQwvCGNfxXYZhXdr/Amow0Lmz18jOniyFhgx9r/66+qZRSfSQlAn9FhZPZS4UFUxcxx7+OmTvf5flgKc5WLzdVP8Ufj72D8ynj2GMDpG34My9np/N6VibZDhs/d9ZzdbMX57jrsRx9LOX2Im5aKszNd8bkpipKKXW4UiLwO57AhUt5ernw1JqHmTcwm3cHZJDj/SvZW8LUWy20HTWEAeEwX292859NLQwKh/GLjbrCr1Aw6VKKgbn5TsqqXRr4SqmEkhKB376CZruNjlO4weXlupZW3hiQwTaHnVaLMCgU5pQ2P5O9bdjDVj4efxfnjbCytVOvvv1LKaUSSUoEfkcdh3eKAxsYsTvE1ZvvxyFB/MbGx+P/i81+F/sGn8Yv12Yz9/QJTC7M0169UirhpVzgdxzeWVExkTveW8svTv8L/m3v4zj23EjIz5jA9MI88sd/HvLaq1dKJbqUmYfflc7z7SHyF0BZtetLw0BKKZUIDjQPP6UDXymlks2BAj/pbmKulFKqaxr4SimVIjTwlVIqRWjgK6VUitDAV0qpFBHXs3REpAXYEus6DkEe4Ix1EYco0WpOtHoh8WpOtHpBa+5otDEmv6sN8X7h1ZbuphfFIxFZnUj1QuLVnGj1QuLVnGj1gtbcUzqko5RSKUIDXymlUkS8B/78WBdwiBKtXki8mhOtXki8mhOtXtCaeySuT9oqpZTqO/Hew1dKKdVHNPCVUipFxDzwRWSqiGwRkW0icncX20VE/hzdXiYiE2NRZ4d6RonIv0Vks4hsFJHbu2hzgYi4RGRd9Ovnsai1U02VIrIhWs+XliCNp+MsIsd3OHbrRKRZRO7o1Cbmx1hEnhSRWhH5tMNrg0VkqYhsjX4f1M3PHvBz34/13i8in0X/m78kIgO7+dkDfn76ueb/FZHdHf7bT+vmZ+PlGD/XodZKEVnXzc8e+WNsjInZF2AFKoCxgANYD5zYqc004A1AgEnAqhjXXABMjD7OBsq7qPkC4LVY1tlF3ZVA3gG2x9Vx7vQZ2UfkYpK4OsbAecBE4NMOr80B7o4+vhu4r5t/0wE/9/1Y76WALfr4vq7q7cnnp59r/l/gxz343MTFMe60/QHg57E6xrHu4Z8BbDPGbDfG+IG/A9M7tZkO/NVErAQGikhBfxfazhiz1xjzSfRxC7AZGBGrevpQXB3nDi4GKowxO2NdSGfGmOVAQ6eXpwMLo48XAld38aM9+dz3ua7qNca8ZYwJRp+uBEYe6ToORTfHuCfi5hi3ExEBvgY8e6Tr6E6sA38EUNXheTVfDs+etIkJERkDTABWdbH5LBFZLyJviMhJ/VpY1wzwloisEZFZXWyP1+N8Pd3/DxJvxxhgmDFmL0Q6B8DQLtrE67H+NpG/8rpysM9Pf5sdHYZ6spths3g8xucCNcaYrd1sP+LHONaBL1281nmeaE/a9DsRyQJeAO4wxjR32vwJkSGIU4CHgZf7u74unG2MmQhcDnxfRM7rtD3ujrOIOICrgH90sTkej3FPxeOxvgcIAou6aXKwz09/ehQoBE4F9hIZJuks7o4x8HUO3Ls/4sc41oFfDYzq8HwksOcw2vQrEbETCftFxpgXO283xjQbY9zRx68DdhGJ6R3QjTF7ot9rgZeI/MnbUdwdZyIf/E+MMTWdN8TjMY6qaR8Ki36v7aJNXB1rEZkJXAl8w0QHkzvrween3xhjaowxIWNMGHism1ri7RjbgGuA57pr0x/HONaB/zFwnIgcE+3NXQ8s7tRmMXBjdBbJJMDV/idzLETH4Z4ANhtjHuymzfBoO0TkDCLHub7/qvxSPQNEJLv9MZETdZ92ahZXxzmq2x5RvB3jDhYDM6OPZwKvdNGmJ5/7fiEiU4G7gKuMMZ5u2vTk89NvOp1b+ko3tcTNMY6aAnxmjKnuamO/HeMjfda6B2e1pxGZ6VIB3BN97RbgluhjAR6Jbt8AlMS43nOI/GlYBqyLfk3rVPNsYCORmQErgckxrnlstJb10boS4ThnEgnw3A6vxdUxJvLLaC8QINKjvBkYArwDbI1+HxxtexTweoef/dLnPkb1biMy1t3+WZ7Xud7uPj8xrPlv0c9oGZEQL4jnYxx9fUH7Z7dD234/xrq0glJKpYhYD+kopZTqJxr4SimVIjTwlVIqRWjgK6VUitDAV0qpFKGBr5RSKUIDXymlUsT/B+RW3aajZXsZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "indices_pade = np.concatenate((np.arange(12), np.arange(12, 100, 8)))\n", "print(indices_pade, indices_pade.shape)\n", "iw_pade = wn[indices_pade]\n", "siw_pade = siw_cont[indices_pade]\n", "w_pade = np.linspace(-5., 10., num=401)\n", "probl_pade = cont.AnalyticContinuationProblem(im_axis=iw_pade,\n", " re_axis=w_pade,\n", " im_data=siw_pade,\n", " kernel_mode='freq_fermionic')\n", "sol_pade = probl_pade.solve(method='pade')\n", "check_axis = np.linspace(0., 1.25 * iw_pade[-1], num=500)\n", "check = probl_pade.solver.check(im_axis_fine=check_axis)\n", "plt.plot(iw_pade, siw_pade.imag, ls='None', marker='x')\n", "plt.plot(wn, siw_cont.imag, ls='None', marker='.')\n", "plt.plot(check_axis, check.imag)\n", "plt.xlim(0., check_axis[-1])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot both spectral function on the full frequency range and in the low-frequency region." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hb5dn48e8j2fKQ93ZiO3ESZ0+yBxlAIVBWgbZQSoGUhlkobeGlfVva0sWvUPpSdgo00BYoG0rDJpAEyCZ7x3Fix04c76n9/P44suM4HrIt25J1f67Ll6Rzjo4eOc65z7PuR2mtEUIIEXpM/V0AIYQQ/UMCgBBChCgJAEIIEaIkAAghRIiSACCEECFKAoAQQoSoTgOAUipbKbVSKbVbKbVTKXVHG8copdRflVIHlFLblFJntNi3WCm117vvHn9/ASGEEN3jSw3ABfxEaz0GmAXcqpQa2+qY84E8789S4AkApZQZeMy7fyxwVRvvFUII0Q86DQBa6xKt9Wbv81pgNzC41WGXAM9rw1ogQSmVCcwADmit87XWDuAl77FCCCH6WVhXDlZKDQWmAOta7RoMFLZ4XeTd1tb2me2ceylG7QGr1Tp19OjRXSmaEEKEtE2bNpVprVO78h6fA4BSKgZ4DfiR1rqm9e423qI72H76Rq2XAcsApk2bpjdu3Ohr0YQQIuQppQ539T0+BQClVDjGxf9fWuvX2zikCMhu8ToLKAYs7WwXQgjRz3wZBaSAZ4DdWuuH2jnsbeB73tFAs4BqrXUJsAHIU0rlKqUswJXeY4UQQvQzX2oAc4FrgO1KqS3ebT8HcgC01k8CK4ALgANAA3C9d59LKXUb8D5gBp7VWu/06zcQQgjRLZ0GAK31Gtpuy295jAZubWffCowAIYQQnXI6nRQVFWGz2fq7KAEpMjKSrKwswsPDe3yuLo0CEkKI3lZUVERsbCxDhw7FaIEWTbTWlJeXU1RURG5ubo/PJ6kghBABxWazkZycLBf/NiilSE5O9lvtSAKAECLgyMW/ff783UgAEEKIECUBQAghAlBBQQEvvPBCr36GBAAhhAhAEgCEEKIfFBQUMHr0aG644QbGjx/P1VdfzUcffcTcuXPJy8tj/fr1rF+/njlz5jBlyhTmzJnD3r17AXjooYdYsmQJANu3b2f8+PE0NDRw8OBBFi9ezNSpUznzzDPZs2cPANdddx233347c+bMYdiwYbz66qsA3HPPPaxevZrJkyfzl7/8pVe+pwwDFUIErN/8Zye7ilunHuuZsYPi+NVF4zo97sCBA7zyyissW7aM6dOn88ILL7BmzRrefvtt/vCHP/D888+zatUqwsLC+Oijj/j5z3/Oa6+9xo9+9CMWLlzIG2+8we9//3ueeuopoqOjWbp0KU8++SR5eXmsW7eOW265hU8++QSAkpIS1qxZw549e7j44ou54ooruP/++3nwwQd55513/Pr9W5IAIIQQbcjNzWXChAkAjBs3jrPPPhulFBMmTKCgoIDq6mquvfZa9u/fj1IKp9MJgMlkYvny5UycOJEbb7yRuXPnUldXxxdffME3v/nN5vPb7fbm55deeikmk4mxY8dy/PjxPvuOEgCEEAHLlzv13hIREdH83GQyNb82mUy4XC5++ctfsmjRIt544w0KCgpYuHBh8/H79+8nJiaG4mIj96XH4yEhIYEtW7bQlpafZSRW6BvSByCEEN1QXV3N4MHG2ljLly8/Zfsdd9zBqlWrKC8v59VXXyUuLo7c3FxeeeUVwLjIb926tcPzx8bGUltb22vlBwkAQgjRLXfffTc/+9nPmDt3Lm63u3n7nXfeyS233MLIkSN55plnuOeeeygtLeVf//oXzzzzDJMmTWLcuHG89dZbHZ5/4sSJhIWFMWnSpF7rBFZ9Wd3wlSwII0To2r17N2PGjOnvYgS0tn5HSqlNWutpXTmP1ACEECJESQAQQogQJQFACCFClAQAIYQIURIAhBAiRHU6EUwp9SxwIVCqtR7fxv67gKtbnG8MkKq1rlBKFQC1gBtwdbWHWgghRO/xpQawHFjc3k6t9QNa68la68nAz4DPtNYVLQ5Z5N0vF38hxIBXUFDA+PGn3SsHpE4DgNZ6FVDR2XFeVwEv9qhEQggh+oTf+gCUUtEYNYXXWmzWwAdKqU1KqaX++iwhhOhNTemgr732WiZOnMgVV1xBQ0MD9913H9OnT2f8+PEsXbq0OW/Ppk2bmDRpErNnz+axxx5rPo/b7eauu+5i+vTpTJw4kaeeeqq/vlKb/JkM7iLg81bNP3O11sVKqTTgQ6XUHm+N4jTeALEUICcnx4/FEkIErXfvgWPb/XvOjAlw/v2dHrZ3716eeeYZ5s6dy5IlS3j88ce57bbbuPfeewG45ppreOedd7jooou4/vrreeSRR1iwYAF33XVX8zmeeeYZ4uPj2bBhA3a7nblz53LuueeSm5vr3+/UTf4cBXQlrZp/tNbF3sdS4A1gRntv1lov01pP01pPS01N9WOxhBCi67Kzs5k7dy4A3/3ud1mzZg0rV65k5syZTJgwgU8++YSdO3dSXV1NVVUVCxYsAIzA0OSDDz7g+eefZ/LkycycOZPy8nL279/fL9+nLX6pASil4oEFwHdbbLMCJq11rff5ucB9/vg8IUSI8OFOvbcopU57fcstt7Bx40ays7P59a9/jc1mQ2t92rFNtNY88sgjnHfeeX1R5C7rtAaglHoR+BIYpZQqUkp9Xyl1k1LqphaHfQP4QGtd32JbOrBGKbUVWA/8V2v9nj8LL4QQveXIkSN8+eWXALz44ovMmzcPgJSUFOrq6pqXbkxISCA+Pp41a9YA8K9//av5HOeddx5PPPFE82Ix+/bto76+5WWyf3VaA9BaX+XDMcsxhou23JYPTOpuwYQQoj+NGTOG5557jhtvvJG8vDxuvvlmKisrmTBhAkOHDmX69OnNx/79739nyZIlREdHn3K3f8MNN1BQUMAZZ5yB1prU1FTefPPN/vg6bZJ00EKIgBII6aALCgq48MIL2bFjR7+Woz2SDloIIUSPSAAQQohWhg4dGrB3//4kAUAIEXACsWk6UPjzdyMBQAgRUCIjIykvL5cg0AatNeXl5URGRvrlfP6cCSyEED2WlZVFUVERJ06c6O+iBKTIyEiysrL8ci4JAEKIgBIeHh4wqRIGOmkCEkKIECUBQAghQpQEACGECFESAIQQIkRJABBCiBAlAUAIIUKUBAAhhAhREgCEECJESQAQQogQJQFACCFClAQAIYQIURIARNAprGjgZ69v51BZ4KytKkQw8mVR+GeVUqVKqTZXR1BKLVRKVSultnh/7m2xb7FSaq9S6oBS6h5/FlyErvvf3cOL649w71sDf8EOIXqTLzWA5cDiTo5ZrbWe7P25D0ApZQYeA84HxgJXKaXG9qSwQjhcHj7cdRyAzw+UUWtz9nOJhAhenQYArfUqoKIb554BHNBa52utHcBLwCXdOI8QzfYdr8Xh9vCtaVl4NGwtrO7vIgkRtPzVBzBbKbVVKfWuUmqcd9tgoLDFMUXebW1SSi1VSm1USm2UhSBEe3YV1wDw3VlDANhaVNWfxREiqPkjAGwGhmitJwGPAG96t6s2jm13jTet9TKt9TSt9bTU1FQ/FEsMRLuP1RBtMTN+UDzpcRHkn5COYCG6q8cBQGtdo7Wu8z5fAYQrpVIw7vizWxyaBRT39PNEaCusaCQ7MRqTvYpfhz9PzfFD/V0kIYJWj5eEVEplAMe11lopNQMjqJQDVUCeUioXOApcCXynp58nQtvRqkYGJ0bBpuWcX/8WI+s3gediMMmIZiG6qtMAoJR6EVgIpCilioBfAeEAWusngSuAm5VSLqARuFJrrQGXUuo24H3ADDyrtd7ZK99ChIyjlQ1My0mALS8AMJwiag9vJjZ3Wj+XTIjg02kA0Fpf1cn+R4FH29m3AljRvaIJcapam5Mam4vR0dVQto+CvGsZuv85ag6ukwAgRDdIvVkEjZJqGwC5pmMAuEacR7mORRVt6s9iCRG0JACIoFFWZwcgw3kUgPisMWzxjCC6bEt/FkuIoCUBQASN8joHAIm2QgiLIiljCHsYQlzdIXA5+rl0QgQfCQAiaJR7awDWugJIGobZbKYiIhsTHqgu7PjNQojTSAAQQaO83oFJQXj1IUgeDkBDTI6xsyK/H0smRHCSACCCRlmdg6TocFT1UUgwLvzuhFxjZ4VMCBOiqyQABBu3C4pDs9OzvM5OttUDrkaISQfAmpRJvY6UGoAQ3SABINisexKWLYDDX/R3Sfpceb2D3Mg644U3AKTFRXFYp+MuO9CPJRMiOEkACDa1JcbjwU/6txz9oLzOTk5EUwAwEgYmx1go1Kl4Ko/0Y8mECE4SAIKNyWw8Fm3s33L0g/J6B4PDjHTQTTWAlBgLxToZVSd5BoXoKgkAwaa+3HgsXAe63ezaA47D5aHW5iJNeReAaQ4AERzTSYQ5asFe248lFCL4SAAINg1lxqOzAVy2/i1LH6qzuwBI0JWgzBCVBEByTAQl2nhOjdQChOgKCQDBpr7Famm2mv4rRx+rsxkBIM5VCTFpzemfk60WjjUHgKP9VTwhgpIEgGBTX0bzYmsh1ORR4138PcZZbgQAr8hwMzUW72upAQjRJRIAgk19WfMsWOyhsyB6UxNQpLMSolNO2eeyZhhPJAAI0SUSAIKJsxGc9ZDonf0agk1AFkcVRCedsi8+NoZqU4I0AQnRRRIAgkm9twM4aZjxGEJNQLV2owkozFHd3AHcJNlqoZRkqQEI0UUSAIJJg3cIaJK3BmAPrRqAGTdmezVEJZ6yLzkmgmKdCNVSAxCiKzoNAEqpZ5VSpUqpHe3sv1optc3784VSalKLfQVKqe1KqS1KqdCbueRvjnrjMTbTeAypGoCLeLzfv1UTUEqMhSOuRLQ0AQnRJb7UAJYDizvYfwhYoLWeCPwWWNZq/yKt9WSttSza2lPOBuMx1tvpGUJ9ALU2FylmbwBoXQOwWijxJKFsVSeDpBCiU50GAK31KqCig/1faK0rvS/XAll+KptoreniFhEL4daQawIaZGk0XrTqA0g6ZTJYSR+XTIjg5e8+gO8D77Z4rYEPlFKblFJLO3qjUmqpUmqjUmrjiRMnOjo0dDm9F8DwaCMIhFIAsLtIt3hrQNFt1ABINl5IM5AQPgvz14mUUoswAsC8Fpvnaq2LlVJpwIdKqT3eGsVptNbL8DYfTZs2LXSS3HSF01sDCI+GyLgQawJyMsbcVAM4NQAkWS2SDkKIbvBLDUApNRF4GrhEa13etF1rXex9LAXeAGb44/NClsN7B2yJhoi40OoEtrlIMXtTQbcxDPRkOoiiPi6ZEMGrxwFAKZUDvA5co7Xe12K7VSkV2/QcOBdocySR8FFTJ3CINgElm+qNRHCR8afsS7RasGOhMSxe+gCE6IJOm4CUUi8CC4EUpVQR8CsgHEBr/SRwL5AMPK6UAnB5R/ykA294t4UBL2it3+uF7xA6HPUQFmmsCRARe3JxmBBQa3ORYKmHqARQ6pR94WYTcZFhVIelEBVCvxMheqrTAKC1vqqT/TcAN7SxPR+YdPo7RLc5G4y7fwCL9WSNIATU2V3EWuohMqHN/ckxEZR7ksmQPgAhfCYzgYOJo8G48AOER53sEwgBdTYXMbr+tOafJklWC8dJkk5gIbpAAkAwcdafrAGER58cFjrA2ZxuHG4PVk9dhwHgqDvRWC/B7ezjEgoRnCQABBNno3HnDyebgEJgWcjmVNAdBIBkq4XDznhAQ+2xPiydEMFLAkAwad0EhA6JWkBTKuhIV22HNYB8u3efdAQL4RMJAMHklCYgbyAIgQBQ6w0A4Z0EgGKPd4KYzAYWwicSAIKJo8GYBAYnH50DP/lZrd1JBA7Mbnv7TUAxFo7ppgAgNQAhfCEBIJg4G07e+Tf1BYTASKA6m4tYvDWddmsAEVQRg8dkgVoZCSSELyQABBNH/ck7/+YmoIEfAGptLuKUt6bT3jwAqwVQNEZlSA1ACB9JAAgmLSeCNdUAQiAA1NldxOH9nlFtB4Akq8U41pIqcwGE8JEEgGDhcYPLdupMYAiNJiB7yxpA+53AANVhKdIEJISPJAAEi6bRPpYWE8EgJDqBa2xOkswd9wFEhpuxWsycMKUYTUAhMD9CiJ6SABAsWmYChRZNQAN/GGidzUVaWMcBACApxsJxnQhuOzS0u4idEMJLAkCwaFoOsqnpp7kJaODXAOrsLpLDbMaLjgKANYIit7ePQJqBhOiUBIBgcVoNIPrU7QNYrc1lNAGZLUY67HYkWy0ccngDgIwEEqJTEgCCRfNqYK3mAYRIE1CCqcG4+2+1FkBLSVYLB21xxgupAQjRKQkAwaLlesBgLAoTFhkSTUC1dhfxqqHD5h8wagAHGqLRKBkKKoQPJAAEi6YaQNOdP3hTQodCE5DTmAfQSQBIslpocJvQVpkLIIQvJAAEC2erJiAImTUB6uwurLr9VNBNmuYCOK2ZkhFUCB90GgCUUs8qpUqVUm0u6K4Mf1VKHVBKbVNKndFi32Kl1F7vvnv8WfCQ07oTGIw5AQO8CUhrTZ3NRbSn/eUgmyTHGAGgMTJNOoGF8IEvNYDlwOIO9p8P5Hl/lgJPACilzMBj3v1jgauUUmN7UtiQ1roTGEKiCcjm9ODyaKLcvtQAIgCoDU+VlNBC+KDTAKC1XgV0NKvmEuB5bVgLJCilMoEZwAGtdb7W2gG85D1WdEfrTuCm5wO8CajWbizvGOFufy2AJsneJqDK8HSwVYG9ttfLJ0Qw80cfwGCgsMXrIu+29ra3SSm1VCm1USm18cSJE34o1gDjaABlgrCIk9tCoAmozuYy1gLwOHzuAzhmSjM2VBV2cLQQwh8BoK2B2bqD7W3SWi/TWk/TWk9LTU31Q7EGmKa1AFqOgw+BJqBam4s4Ok4E1yTaYiYy3MRR7f37qTrSy6UTIriF+eEcRUB2i9dZQDFgaWe76A5H/alDQCEkAoCRCdT7HTsJAEopkq0RHHJ7a0nVUgMQoiP+qAG8DXzPOxpoFlCttS4BNgB5SqlcpZQFuNJ7rOgOZ4vlIJtYogd8Ouham4t4Ol4MpqUkq4UjNqsxSa7qcC+XTojg1mkNQCn1IrAQSFFKFQG/AsIBtNZPAiuAC4ADQANwvXefSyl1G/A+YAae1Vrv7IXvEBqcjSdXAWsSAjWAWpvT5xoAGAGgosEB8dnSBCREJzoNAFrrqzrZr4Fb29m3AiNAiJ5quRxkk6YAoHWHOXKCmbEamLcG0M5qYC0lWy0cKK2DwTkSAITohMwEDhYtl4Ns0hQQBvBQ0Dqb730A4K0B1DsgQQKAEJ2RABAsHA2nTgKDkEgJXWt3kWzuQgCIsdDodOOMzYaG8gE/TFaInpAAECyc9afXAEIhANhcpJgbISzq1DkQ7WiaDFYTmWlskLkAQrRLAkCwcDScPgy0qQloAI8EqrO7SDI3+NT+DyfTQVSGpxsbpBlIiHZJAAgWzo6agAZuM0etzUmiqfNU0E2aZgMfNzcFABkKKkR7JAAEA629E8HaawIKgU5gH+YAwMkmoGOuODBHSA1AiA5IAAgGbidodxsTwZoWhh/YTUBxus73JiBvSuiKBpcxEqiyoBdLJ0RwkwAQDJozgbZuAoo6df8AVGtzYdX1PjcBxUaEEW5WlNc7IHk4VOT3cgmFCF4SAIJB81oAodcEVGtzEu2p87kJSCnlnQtgh+QRUH4QPJ5eLqUQwUkCQDBoXg2sVQ2guQloYNYAtNbU2x1E+rAYTEtJ1ghjMljycHA1Qq3kIBSiLRIAgkHTBf60bKBNTUADsw+gweHGqhtRaJ/7AMDoCDaagPKMDWX7e6mEQgQ3CQDBwNlJE9AA7QQ2UkH7thZAS83pIJJHGBvKD/RC6YQIfhIAgoGjnSYgk9kIAo66vi9THzBSQTelgfC9BpBktVBR54DYDON3Vn6wl0ooRHCTABAMmkb5tK4BgNEPMED7AIxU0L5nAm2SbLVQa3dhd3uMfgCpAQjRJgkAwaBplE/riWAwoAPAKamgu9IE5J0LUFnv9I4EkgAgRFskAASDpgt861QQAJbYAdsEVGdzEa98Xw2sSdNs4PKmoaBVh8Hl6I0iChHUJAAEg+ZhoO3VAAZmADAWhPc9FXSTpoRwzR3B2iMzgoVogwSAYODoLAAMzCagWrtRA9DKBBGxPr+vKSHcKSOByvb1RhGFCGo+BQCl1GKl1F6l1AGl1D1t7L9LKbXF+7NDKeVWSiV59xUopbZ792309xcICc56MFvA3MYKnhYr2AdmDaCuaUH4yPguLXnZ3ARU54DUUYCC0l29VEohgpcvi8KbgceArwFFwAal1Nta6+b/UVrrB4AHvMdfBNypta5ocZpFWusyv5Y8lDjaWA4SY6YslhjUQK0B2JwMNzegutD+DxAfFY7ZpIwaQEQMJOXCse29VEohgpcvNYAZwAGtdb7W2gG8BFzSwfFXAS/6o3DCq421APYdr+XMP63k31srcNpq+6lgvavO7urSWgBNTCZFYnS4MRsYIH0cHN/ZCyUUIrj5EgAGAy3X1SvybjuNUioaWAy81mKzBj5QSm1SSi1t70OUUkuVUhuVUhtPnDjhQ7FCSKu1ALTW/OilLTQ63DjDolGOOuxOVz8WsHfU2l0kKN9XA2sp2RpBWZ3deJE+wcgKOkBrSkJ0ly8BoK3GV93OsRcBn7dq/pmrtT4DOB+4VSk1v603aq2Xaa2naa2npaam+lCsEOJsOGUS2Kd7T7CrpIafXzCGM8cNJQw3K74aeAuf1HZxMZiW0uMjOV5j874YB2go3e3fAgoR5HwJAEVAdovXWUB76RWvpFXzj9a62PtYCryB0aQkusJeZ4z393ph/RHSYiO4ePIghmSmAfDBloGX7qDO5iS2C2sBtDQoPpKSam8AyBhvPB7f4cfSCRH8fAkAG4A8pVSuUsqCcZF/u/VBSql4YAHwVottVqVUbNNz4FxA/hd2laO2eRhkg8PFqn0nOH98BuFmE8oSA8Cew8XU2wdWM1CdzUmMpwaik7r83oz4SMrq7DhcHojPMQLoMfnTE6KlTgOA1toF3Aa8D+wGXtZa71RK3aSUuqnFod8APtBat2xoTQfWKKW2AuuB/2qt3/Nf8UOEvdYYzQJ8tvcEdpeH88ZnGPu828M9jaw/VNHeGYKS21ZLGC6ITu7yezPjI9EaSmttYDJJR7AQbeh0GCiA1noFsKLVtidbvV4OLG+1LR+Y1KMSCqMJyFsD+HhPKQnR4cwY6r0r9tYAYpSNr45Usmh0Wn+V0u8s9kqjB6obASAj3lgr4Vi1jazEaCMAbH/VWB3MJPMfhQCZCRwcHHXNF/r1hyqYmZtEmNn7T+cdHjomycTmI1X9VUK/83g0Ec5K40U3awAAxU39AIOmgL1aEsMJ0YIEgEDndoLLBhFxlFQ3cqSigRm5LS6I3sAwLsXElsIq3J72BmgFl3qHi0S88xu6VQMwAsCxam8m1Wzv2IOi9f4onhADggSAQGf3XgQjYprb+Jubf6C5aWhEvKbO7uJw+cAY615rc5HUHAC63gkcFxlOTETYyZFAyXnGaKJCCQBCNJEAEOiaA0AsGwoqiIkIY0xmi8Ro3iGSg6OcgDFDeCCotblIVE0BIKVb58iIj+RYUwAwmSBrOhRt8FMJhQh+EgACXVOqZ4tRA5g6JPFk+z9ARBwAqeF2lIK9xwZGYrgam5MkVYvHFN6lTKAtZbacCwCQNcOYDGar9lMphQhuEgACnbcG0Giysr+0jik5rWbFmsMg3IrFWUtOUvQAqgE4SaQWd2RilzKBtpQR16IGAJA1DdBwdJN/CilEkJMAEOi8qZ4P1Sq0hgmD25gVGxkH9mpGpseyd8AEAJdRA4jqegdwk8z4SEprbTjdHmND1jRAQaE0AwkBEgACn70GgD0VxuietgNAPNhqGJUey6Gyeuwud1+WsFfU2FwkqRpUNzqAm2QlRePRUFzlHQkUGQ9pY+HIF34qpRDBTQJAoPP2Aewo85AWG0FaXOTpx0TEga2a4WlW3B5NYUVDHxfS/2oanSRRizmmex3AADlJRgK9w+Utfh/DFsLhL8HZ2LMCCjEASAAIdN4+gK9KXW3f/YO3CaiGIcnGpLCCsuAPAEYTUB1ma/cDwJBkIwAcaRkQhy8Ctx0OSy1ACAkAgc7bB7DjhJtx7QYAowloaFMAGABzAeoabcSrum5NAmuSHhuJJcx0agAYMsdYXjN/pR9KKURwkwAQ6Ow1uMOicGpz+zWACKMGkBgdTmxk2KlNHkHKXV+JCQ09qAGYTIrsxKhTJ8dZrJA9Ew5KABBCAkCgs1VhMxvj4DtsArJVo5QiN8U6IGoANJYbjz2oAQAMSbaeHhCHn2WsDVB7vEfnFiLYSQAIdI1V1GAlJSaC9LiIto+JjAe3A5y2ti94QcjU6E1t3YNRQGB0BBdWNKB1ixxJw88yHg982KNzCxHsJAAEusYqylzRjB8ch2pvQpR3NjD2GoYmR1NU2WAshBLELPamANDTGkA09Q73yQXiATInGYvE7DptXSMhQooEgADnaazkmDOy/eYfOLlkoq2aIclWPBqOVgX3MEeL3Zva2g8BAKCgrEWzmFIw9mI4+Ak0DpwU2kJ0lQSAAOeqr6RaWxnfUQCISjQeGysZ2nTBC/J+gMimtQCietYElJdm9J/sO94qR9LYS8HjhL3v9uj8QgQzCQABTtmqqNbWjmsATe3kDRUt5gIEbwBwezQxnhqcpkiwRPfoXIMTooi2mE/PkZQ1DeKyYNebPTq/EMHMpwCglFqslNqrlDqglLqnjf0LlVLVSqkt3p97fX2v6IDbSbi7AUd4XPMKV21quktuKCclxkJUuJnCiuBtAqqzuUhWNdgsiT0+l8mkyEuPPT0AKAVjLzGagRoG1lrKQviq0wCglDIDjwHnA2OBq5RSY9s4dLXWerL3574uvle0xZu2OCYhpf0OYDjZTt5YgVKKnKToUyc/BZkam5M0KrFH+md945FpMW1nSZ1ytTF6auuLfvkcIYKNLzWAGcABrXW+1toBvARc4uP5e/LekGevNcbCJ4bPohoAACAASURBVCZ3ciGMiAVTGDQYx2d7hz4Gqxqbk1RVjSvaPwFgVEYsZXUOyuvsp+5IH2esEbDx76AHxlKaQnRFmA/HDAYKW7wuAma2cdxspdRWoBj4qdZ6Zxfei1JqKbAUICcnx4diDXyHjxYzEshIz+j4QKWMWoC3KSMnKZrPD5Shte645hCgahpdjFZV2GP8EwDy0k92BM+OaTWXYtr18ObNRm6goXP98nndVd3gZM2BMnYWV7PnWC2HyuqpqHfQ6HRjUhBtCSPZamFQQhR5aTGMHRTHrGHJDEqI6tdyi+DlSwBo6wrS+nZpMzBEa12nlLoAeBPI8/G9xkatlwHLAKZNmya3Y0Bh8VFGAjmDB3V+cFRScw0gJymKRqebsjoHqbHtTB4LYDV1dSSqOkrjOgl8PhrlDQB7j9Uwe3irYaVjL4V374ENT/dLAGh0uHl761He/KqY9QUVuD2aMJNiRFoMYzPjSI6xEGUxozXU212U1zkorGxgbX45du9cj5ykaOaOSOb88ZnMGZ586opxQnTAlwBQBGS3eJ2FcZffTGtd0+L5CqXU40qpFF/eK9pXetxIVZCamt75wdFJ0GgMncz2pkEurGwIygBgryoBwJLgQ+DzQXpcBCkxEWwramMpSEs0TLsOvngEyn8BycP98pmdqWpw8NSqfF5Yd4TqRifDU63cOH8YZ49JY8LgBCxhHV/E3R7N3mO1rM0vZ21+Oe9sLeHF9YUkWy2cPyGDy8/IYnJ2QlDWAEXf8SUAbADylFK5wFHgSuA7LQ9QSmUAx7XWWik1A6NvoRyo6uy9on1V5UYAUL5MhopOgrL9wMk8+IUVDZyR0/ORNH3NWX0MgKikwX45n1KKydkJbClsZ9LX7Ntg3VOw5iG45DG/fGZ77C43T68+xJOfHaTO7uL88RlcO3soM3KTunSxNpsUYwfFMXZQHEvm5WJzuvls3wn+s7WYVzcV8c+1R5iYFc81s4Zw0aRBRIabe/FbiWDVaQDQWruUUrcB7wNm4Fmt9U6l1E3e/U8CVwA3K6VcQCNwpTaSr7T53l76LgOKzenGXVeKx2zC5MtkqKik5j6ArERvHvwgzQmka40AYIn3TxMQwJScBD7afZzqBifx0eGn7oxJgzO+BxufhQX/Awm90we16XAF//Padg6U1nHOmDTuOm80ozK6t+B9a5HhZs4bl8F54zKos7t4Y3MRz315mLte3cYfVuzmmtlDuX7OUBKtFr98Xqcaq6C6yFjRzl4LJjNYYiAyARKHQLj0WwQCX2oAaK1XACtabXuyxfNHgUd9fa/o3N5jtSTpapwRSUSYfGjTjU42+gA8HqIsZtJiI4J2KKi53lvzifVfAJicnQDA1qIq5o9MPf2AuXfApufgk9/BZcv89rlg3PXf/+4eln9RwKD4KJZfP52Fo/zTwd2WmIgwrpk9lO/OGsKX+eX8/fMC/vrxfp5enc/VM3O44cxhpLe1slx32WuhYA0UrjPWWz6xBxrKOniDgvhsGDwFhp4JwxZBygj/lUf4zKcAIPre9qPVpKlqVEwbF6u2xKSBdhv9ANbkoJ4LENFwHDcmzH4aBQQwMSsek4KNhyvbDgDxWTD7VqMZaPoPIHu6Xz73SHkDt76wme1Hq/ne7CHcvXg0MRF9899OKcWc4SnMGZ7CvuO1PPHpQZ79vIDnvjjMVTOyufWsEaTFdjMQ1JTA3v/CnhVQsNqYT2EKg4yJMPrrRl9KwhAjT1VELHjcxvKmjZVQfgDK9sGRdbDrLeN8GRNh4reNH1//5kWPSQAIUDuOVnOVuZbwuEzf3hDj7SiuO9YcANbml/deAXuR1X6cSlMyKSb/tVvHRoYzISuBNftP8OOvjWz7oDN/DFv+Be/dA9//EHypeXXg/Z3H+OkrW1HAsmumcu44/9Voumpkeix/+fZk7jxnJI9/eoB/rjvCvzcWcu2codw0f7hvTUMuB+x7F776Jxz4CLQHkobDzBsh7zwjvUZXmna0hop82P8BbHsZPvhf+Pg+mHQlzPkhpOR1/wsLn8h4sQC1/Wg1GWF1KKuPd0NNzSXe9vPspGhKamzYXe5eKmHviXeWUh3u/7vAM0eksLWomhqbs+0DImLha7+Foxth3RPd/hytNX/9eD83/mMTuSlW/nv7mf168W8pJzma+y+fyMc/XsDicRksW5XP/D+t5OGP9lPb3u+l4hC893N4aDS8/D04tgPm/RhuXQ8/3ATn/g5yz+x6u75SRk1h1s2wdKVxvsnfga0vwaPT4c1boKqw8/OIbpMAEIBsTjf7jteSoKvA1wDQXAMw2s9zkqLRGo5WBl9OoCTXCeoi/H/BnJeXgtuj+fJgBzWjid+CURfAR7+B0j1d/gy7y81PXt7KQx/u47Ipg3nlptnNw3IDydAUK/935RTeu2M+c0Yk85eP9jH/Tyv526p8bE63cXde8Dm8dDX8dQqsfwqGzoOrX4M7d8DZv4TUUcZF3F9SR8FF/wd37oQ5t8H2V+GRqUatwBGczZmBTgJAANp7rBaT206Eu8H39tA2agAAhcEWALQmTZdhi/Z/ADgjJxGrxcwnu0vbP0gpuOhhiIiB174PDt+zqlbWO7jmmfW8/tVRfvK1kfz5W5OICAvs4ZejMmJ56pppvH3bXMYPjudPK7Zz//2/oeIvs2H5BXD4c6Np7Ec74FvPQ945xoie3hSTatQqfrgJxn0DVv8ZHp8F+z/q3c8NQRIAAtDmI5Uk451b52sNwGIFS+wpNQAg6DqCbTUniFROnFYf+z66wBJm4txxGby381jHK6bFpBkjgUp3GWkifMgTdKisnsue+IIthVU8fOVkfnh2XlBNwpqY5OEfeavZmXgXv3Y/TEVVNQ9F3MyKr32MZ9Evwde+KH9KyIbLnoJr3wGzBf51Oby6RLK3+pEEgAC0+UgVo2O9d+6+BgCA2PTmGkBabASWMFPQJYWrKz0MgI7zzySw1i6alEl1o5PV+090fOCIc+CcXxujVD76VYdBYP2hCr7x+OdUNzp58QczuWRy75S9V5zYB//5ETw0Fj75LZZB49BXv0r+tz7mvcjzueXlPVz06Bo+23fi1HWV+1LumXDz57Dof41lPB+fbXRCix6TUUABaPPhSq5NsUMJENuFO6+YjOYagMmkyE6MCrrJYPWlBaQAYYnZnR7bHfNGpJIQHc6rm4o4e0wnKTbm3A6VBfD5w8YkpgV3n3bIm18d5e5Xt5GVFMXy62aQkxx47f2n0RryV8KXj8OBD8EcAZO+DbNugbQxKOBc4Oyxmby15SgPfbiPa59dz8zcJO5ePJqpQ/phdnlYhPH7H3kevL4U/nk5zFgK5/ymx4sGhTIJAAHmeI2No1WNjM+pMwJAV+6E4zKNyThewTgXwFmWD0BU+rBeOb8lzMSV03NYtuogR8obOr5gKwUX/BmcNlj5e2N9hq/9FkwmtNY88skBHvpwHzNzk3jqmqkkRPfRLNvucjTAjldh7RNG85Y1zbirnrYErCmnHW42KS47I4sLJw7ixfVHeOSTA1z+xBecMyaNn543itEZcX3/HTInwdLP4OPfwNrHIf9TuOLvkDG+78syAEgTUIDZfNhI6DY8otpo92zjP2a74rOhphjcLsAIAIUVDf1Xde8GXXWYWh1FYnLvDZu8fu5QzCbF31bnd36wyQSXPAozboQvH4WXr8FWW8lPXjk50ucf358Z2Bf/4zthxV3w59Hw9g9BmeCSx43RPAvu7vRvzBJm4to5Q/nsroX89NyRrMuv4PyHV3Pnv7f0Tw0zPBIW/xGueRNsNfD02cYs7iD6Ow8UUgMIMJuPVGIJM5HiKYO4QV0bZpeQAx4X1JZAQjbZSdHU2l1UNTj7LgdMD4XXHKFIp5LT3RmqPkiPi+SKqVm8uP4I184Zyoi0mI7fYDLD+f8PEoegP/glFftmc7hxKXeecxG3nz0iMDt77bVGe/mm5VC03riZGHsJTL0Ohszt1vBNa0QYt52Vx3dnDeGJzw6y/PMC3tlWzJXTc7h10QgyOlq2tDcMXwQ3rYbXfwD/ud0YsfT1h4wRXMInUgMIMJuPVDFhcDzm2mJj0fKuSBxiPFYdAYJzJJC1voijKh1rL6dL+Mm5o4i2mPmf17bhdHcwIshLA29Hf4Pr9K/B4+S1iN9wR/3/oQJpRIrLDrvfgVeugwdGwFu3GKkXzv09/HgPXP60MZa/hwErIdrCz84fw2d3LeKb07J5cf0R5v9pJb94cztHq/p42HFMGnz3daMpa/sr8LdFcHxX35YhiEkACCCNDjfbiqqYNiQRqo9CfBdHkyScGgBargsQFLQm3l5MWXjvDzlMiYngd9+YwKbDlfzs9e24Pe03HxRXNXLTPzdx+4tfUZ06FfeNa43kcVtfgr9ONiaN1XUyqqi3NFYaE6ZeuwEezIN/Xw2HVsGU78KS9+G2DcakKqsPKcW7KCM+kj98YwKf/GQhl08dzL83FLLwgZXc89q2vm0aMpmNpqzvvWX00/ztLNj8D2kS8oE0AQWQTYcrcbo1s4YlwsZiowmoK+K9NYZWASBoagB1x7FoOzWRfTOM8uJJgzhYWsfDH+/neI2NX100lhFpRnpmrTU7i2t4eWMhL60vBAU/v2A03583DLNJQeZ9MOkq+PR+WPMXo0NyzMXGTOJhi8DcS/+1HA1Gqooj64yRPEfWGkkAo5Nh1Ndh/OUwbAGYwzs/l5/kJEfzx8smcttZeTz12UFe2lDIK5uKuHTyYG5eOKz5d9rrcufDTWuMYPj2bd4moT8bc2REmyQABJAvDpZhNilmJNuNtvz4LjYBhUUYw0arjLH0MRHGGrJBMxeg/AAAdTFD++wj7/zaSNLjIvndf3dxzkOrGJocTXxUOEerbJTV2Qk3Ky4/I4sfnp3H4NZr76aNgW89B2UHYO1jsON12P4yRCV60xwvgMFTIXWM0XHZVfZaIx1F6U6jWePoRijZavxtoIyRL2f+2EjENviM3p+h24nBCVHcd8l4bl00gqc+y+eF9Yd5bXMRZ41O44Yzc5k9LLn3+0ti0uCaN2DVg/DpH+HoJhkl1AEJAAHky/xyJmbFY60zLuAkdWN5wsRcKD/Y/DI7mIaClu0DwJHQN8syNvnOzBzOHZfOG5uP8lVhJfV2NyPSYpk6JJELJmR0PsInZQRc+BdYfD/s/xD2vmsMT9z9trFfmY3+mdhMI2dTTLoRrM3hYAo3Uinba410yQ3lRvNfTVHzEp8AhFshc6IxNyFntpGuOiowV3tLj4vk3ovGcuui4fxz7RGe/7KA7/xtHeMHx/GDM4dxwYRMwntz3WKTGRb+D+TMMjqI/3YWnPd7mH6Df3MXDQASAAJEnd3FtqJqbpw/DMq/NDZ2Z33a1JHG6A+vnKRoviqs7OANgcNzYh82HUF4YhdrPn6QEhPBD+b3cO5BWASMudD40RoqD0HJNmMYZvkBY5JeyRaoKzU6bD3e7JvKZGQitcRCVIJR88uZaTymjDJqGglDepyeuq8lx0Rwxzl53LhgGG98dZSnV+dzx0tbuP/dPVw/dyjfmpbdu8Nnhy2Amz430nms+Ckc+gwufiRgA2d/kAAQINYfKsft0cwengyH8o3ZmV0dBQTGBaOxAurLwJpCTlI0/91egtPt6d27Lj9wHN9Dvs4kI2EAzOxUCpKGGT/jLm3/OI/bCAAD+M40MtzMVTNy+Pa0bFbuLeVvq/P5w4o9/PmDfVw8aRDXzB7CxKyE3vnwmFT4zstGE91Hv4Ynz4TLnzECrPBtFJBSarFSaq9S6oBS6p429l+tlNrm/flCKTWpxb4CpdR2pdQWpdRGfxZ+IFm55wRR4WamD00yFslIyu3eHV+qd7GTE3sBowbg9mhKqmx+LG3vUGX7ydeZDGrd1j6QmcwD+uLfksmkOHtMOi8tnc2K28/k8qlZ/Hd7CRc/+jkXP7qGlzcUUm939cYHGwvMLPnA+H3//Xwjw6in8+G/A12nVxillBl4DDgfGAtcpZQa2+qwQ8ACrfVE4LdA60VVF2mtJ2utp/mhzAOO1ppP9pQyd0QKkeFmow0/qZvNESneAFBmBICgGQlkryOiroj9nsGnd7aKAWfsoDj+8I0JrP352fzm4nE0ONzc/do2pv/+I+56ZSvrD1X4fwZ71lS4cZUxIe7j+2D5142brRDmyy3mDOCA1jpfa+0AXgIuaXmA1voLrXVTQ/NaoO8bcYPY/tI6jlY1ctboNGPZvfIDJy/kXRWXZSQu806GyU4yLqYBHwBKjfLu1kPI7OsZpaLfxEWGc+2coXx453xeuWk2F07MZMX2Er711Jec9efPeGzlAf+OYouMhyuehUufMPpmnpgL6/8WsrUBXwLAYKDlumxF3m3t+T7wbovXGvhAKbVJKbW060Uc+D72LlCyaHSqMRLG44SMCd07mclkJMwq2QJAZnwUYSYV+JPBjm0H4IhlGLGRfTeGXQQGpRTThybxpysmsf5/z+HBb04iLTaCB97fy5l/Wsllj3/O8s8PUVrrh6ZMpYylJ2/50hgptOKn8I9Lm+fPhBJfAkBbDZRt1s2UUoswAsD/tNg8V2t9BkYT0q1KqfntvHepUmqjUmrjiRP9NKuyn3y0+zhjMuPIjI8y7koA0sd1/4SZk411W90uzCZFVmJU4NcAju+gwWTFFN87aaBF8LBGhHHF1Cz+feNsVt+9iLsXj6LB4ebX/9nFrD98zNVPr+XF9Uc4UWvv2QfFDzbSSFz0sDFf4PE53tpA8K2j3V2+BIAioOX/yiyguPVBSqmJwNPAJVrr5kVXtdbF3sdS4A2MJqXTaK2Xaa2naa2npab6f0HwQHW0qpFNhyv5+gRv9svj240RQMl53T/poMngajylHyDgJ4Md285BNZSsAFw/V/Sf7KRoblk4gvd+NJ8P75zPrYtGUFTZyM9e386MP3zEFU98wbJVByko833pzlMoZSTIu/kLo49gxU+N7KLFX/n1ewQqXwLABiBPKZWrlLIAVwJvtzxAKZUDvA5co7Xe12K7VSkV2/QcY52JHf4q/EDwzlYjll40yZv2oWQbpI3uWSqBQVOMxyJj0FXArwvgcqBLtrHBOZRhqZLJUbQtLz2Wn5w7ik9/upAVt5/JHWfn0eBw84cVe1j44Kec95dVPPD+HtYfqvApwd8pEocY6aUvf8aYiPe3s4wU2rbq3vkyAaLTq4zW2qWUug14HzADz2qtdyqlbvLufxK4F0gGHvdO9XZ5R/ykA294t4UBL2it3+uVbxKk/rOtmElZ8QxJthp5/I9ugklX9uykySOMpSQPfw5TryUnKZqqBifVjU7iowKwff34DpTbzibXcM5MkbwtomNKKcYOimPsoDh+dM5ICisa+HDXcd7feYwnP8vnsZUHiY0IY86IZOaPTGV+XmrzaLhOTgwTrjCWA/3kd0Zz0I7XYOHPjFpCH+ZX6is+3WZqrVcAK1pte7LF8xuAG9p4Xz4wqfV2YTh4oo4dR2v4xdfHGBtKdxrpALJn9ezEShlpfwvWgNbNaaELKxqIHxzfw1L3Am9N5SvPCK7rLDe/EK1kJ0WzZF4uS+blUmNz8sWBMj7bV8aqfSd4f6exROqwVCtzhiczMzeZmcOSSOtovYmoBPj6gzDlanj/F0az0Ppl8LX7YOTiATVvQ2YC96OXNxRiNqmTzT+F641Hf8xSHDoPdr4BFfnkJBsrPh0qq2d8QAaA9TRYUii2JTNMagCiB+Iiw1k8PpPF4zPRWnPwRF1zMHhj81H+udYY6TMs1crM3GRmDUtiZm5y24vZDJoC171j5Hb68F548UpjMZ2FPzMWqh8AJAD0E5vTzcsbCzl3bDrpcd4/vkOfGeP4/TESZvjZxuO+9xk+7UbMJsXeY7VcFGj1Ma2hYA17IyeSqiNJCpKVy0TgU0oxIi2WEWmxfH9eLi63hx3FNazLL2dtfjnvbC3mxfVGQBicEMXknASmZCcwJSeBcYPijUmZSsHoCyDva8bqaqsehOcuhCHzYOE9QR8IJAD0k3d3lFDZ4OTqmd5FXNxOyP8Mxn3DP1XMpFxIGwt7VxA5+xaGp1rZXVLT8/P6W/lBqC3hk4hvMCkrITCXVxQDQpjZxOTsBCZnJ3DjguG4PZpdxTWsO1TOV0eq2HKkiv9uKwEg3KwYkxnHlOwEJmUbAWH41O8TNuUa2PwcrH7ICAQ5c4w0EyMXB12yPpAA0C+01jz1WT4j0mKYM9y7UlPhOrDXGHca/jLqAmOxkroTjM6IY2NBAC1f2OTQZwD8p2Y4V8wMwOYpMWCZTYoJWfFMyDr5d1daY+OrwiojIBRW8sqmIp770kjPbgkzMSo9lnGDZjN+1tvMr/0vWbufwfTSVUbqllm3GBPMgmgBGgkA/WDl3lL2HKvlz9+chMnkvePd9bYx/n/YQv990IRvwuoHYfsrjMk8j7e3FlPV4OjdFLxdtf8DGq1ZFNgyOCNH0vSK/pUWF8l54zI4b5wxL8fl9nDwRD27S2rYVVLDruIa3t95jJc2OIFRmPkj18Rv5Xv17zBsxU9xfHgf1XmXYZ29hOjsQGtvPZ0EgD7m8Wge/mg/gxOiuHiyt/PX7YKdr8OoxUZeeH9JGw2DzoCv/sGYsy4HYHdJrZFyOhA4GiD/U75KuBCrJYypQyUAiMASZjYxKiOWURmxXDrFyICjteZ4jZ1dJdXsKq5hV8lgbjx2Jon1W7jG/S7n7vwnEbuWs0uNYG3C1zk+5EJyMtPJTbaSkxxNZnyUsaxoAJAA0Mf+s62YrUXVPPjNSSfz8x/4EOpPwIRv+f8Dpy2Bt29jktPIDbS7pCZwAkD+SnDZ+GfFGOaPTCUirH+XNBTCF0opMuIjyYiP5KzR6c3bne75HKm4gTVHCrHseoXhRa+zpPJhGiqe5JNNU3jePYuVnslocyRZiVHkJEczJCmanGQrQ5KiGZIcTXZStNH53EckAPShBoeLP723l7GZcVw2pUU+vXVPQewgGHme/z904rfgk9+SsPlR0mLvYEthlf8/o7t2vIbdksgHNXk8PV1yAIngFm42MTw1huGpY2DqvaB/CUc3EbXlBc7f+SYXNq7FaY5iX8KZrA6fy/vV43itoJK6VmsgpMZGMCg+ksz4KAYlRDEooel5JIMSokiNiTjZdNxDEgD60APv7+VoVSN/+fbkk/+AJVuNO+GzftE7Mw3DImDenaj37uF7g77Oi4cDZKSCvRa9ZwUr9AKGpycyPy908j+JEKEUZE1DZU3DfP6f4PAawne8zrjd/2Fc4wfcZI5Aj5hHw5CzKEiaxwFXKofLGzha2UhxdSMHTtSxav8JGhynJqcLNyvS4yIZFB9FRnwk6XERJ4eSd5EEgD7y5cFyln9RwLWzhzAjN+nkjk9+B5EJMKMXM2VPWwLrl3Ft5V95ouo+Sqobjcyj/UhvewXlauQfjln8+jvj/HZHI0RAMocZAzyGLYSv/9lI07LvA9T+97Ee/F/GAeOSR0DufBg9z5hnEJuO1pqaRhdHqxopqW6kuNpGcVUjJVWNFFfZ2FpUxfEaGzZn99YzUH5fdccPpk2bpjduHDirR5ZUN3LRI2uIiwrnP7fNwxrhjbt73zVmF37tPph7R+8W4sha9N/P59/O+Vi/+cTJ2cf9QWtOPDCd0joHq896nZsWjui/sgjR38oPwv4P4cBHcGQtOGqN7cl5xoz+IXONTKWJuW3OEdJaU2t3ER9l2dTVVRelBtDLam1Olj6/iUaHm5eWzjp58a8vg3fuhNQxxvjh3pYzCz37dq784v94ff2zMOkXvf+Z7Vj74SvMatjPJ4Pv5sYFw/utHEIEhOThxs+sm4wRgce2Gnm8Cj43ktFt+rtxXFQiDJ5q/Aw6AwafATFpKKWI6+YiShIAelG93cWS5RvYXVLDsu9NZUSad4inywGvXg8N5fCdl/ssy6Dp7F+wfcuXXHr0QfS2kaiJvTDqqBOHTtRh+fwByswpXHrdj2XmrxAtmcNOXuTn3mEsTnN8p5EluHgzHN0Mqx4A7W3ysaYZi0dljO/Wx0kA6CXHqm0sWb6BPcdq+OtVU04OF3M2wqtL4NAquPRJyJzYd4Uyh7N/4ePUv/NdZr3+A6g4BPPv6rMp7G6P5q1/PMyP1D5qznqQiAhZ/F2IDpnMxjUicyJwvbHNUW8MHineAsd3GMuprnuqW6eXPoBesHJPKXe9uo1Gh4tHrz6DRaPSjB21x407/8NfwAUPwIwf9HnZyuvszPv9Cl4e/DITylYYnU1f/7MxaayXPbdyO4s/vRBL4mASb19t/HELIXrO7USFdb0PIEDGBA4Mx6pt/PjfW7h++QaSrRZev2WucfHXGra/Co/PMqpylz/dLxd/gOSYCOaMymJJ1RJcFz5s3EE8ORdev7F5YfbeUFBWT+TKe0lXVSRc/rBc/IXwp242I0sTkB8cKqvnmTX5vLqpCI8Hblk4nNvPziPSpGH3f2D1n401RjMnw2XLIHVUv5b3OzNz+HhPKSvCz+XiH15olG/Tc7DtJaNTevzlMOJsyJhIld3Dx7tLqWp0MjErnmlDErvcbu/xaN79xwPcbPqE+um3Yc2e3kvfTAjRFdIE1E0nau28t/MY/91WzLpDFYSbTFw6ZRC3zR9KTv1W2P2OcfGvLYaEHGMRiYnfDog7X7dHs/j/VuF0e/jgzgVYwkzQUGGMONjxGhz5EgBnWAzrXSNY5xzBZp3HVs9w8nIGcd8l47u0sMz7b7/Ewk23UZlyBhm3rOjZesdCiDYppbrcBCQBwAd2l5uDpfXsPV7DV0eqWJtfzr7jdUTgYF5SDZflNLAwtgjr8c3Gnb6rEcIiYfhZMOW73lzh/X/hb2nl3lKu//sGbpiXyy8uHHvKvsMFB3n7zZdJKtvAmREHyHYfQaHRKPLJ4nP3GMImXsFll1xOpKXji/neNW8w5MMfUGYZzOAffYyypvTm1xIiZPVaAFBKLQYeQvJsPQAABxdJREFUxlgU/mmt9f2t9ivv/guABuA6rfVmX97blr4MADanm6oGJ1WNDqrqHZyoqKKs/AQ1VWXUVVVQX11OY205ybqSdFXJIHMVwyNryVQVxNlLUE3DsUzhRk991gwYMsdoQgnwvOC/emsHz315mKtm5LBk7lDsLg9vfHWU578sIDLczD3nj+aq6TmYHDVG30XRRpyH16EPrcGibRw2ZcGsWxiyaAmEtxrR43FT8MZvyN72Vw6Zh5J263vEJWf0y/cUIhT0SgBQSpmBfcDXgCJgA3CV1npXi2MuAH6IEQBmAg9rrWf68t62jB+Vq1995Bd4PG6024X2uMHjwuNxod1utMdljI/1GPu0x43yPve4XXjcxqP2uNAuBya3HbPHhsntwOyxY/YYj2EeOxbtJEI5icRBDI2EK3e75fKERaHiMlGxmRCb6Z3AkQcpI4y28/Du5ePoLy63h//33h6eXnOIpj8Dk4LLzsji7sWj2l84217LnpX/gnVPMVrnU2eKo2jElbgnfBtMFhwHPiVjx9/IdB7ho/CFTLzxGdJS5M5fiN7UWwFgNvBrrfV53tc/A9Ba/7HFMU8Bn2qtX/S+3gssBIZ29t62TBtk1huXxnTle+DRCjemkz/KjMaEU4XjxILLZMGpLLhNEbjNEWhzBCo8ElN4JCZLFGGWKMKi4oiMTSIuIQmLNdHI0RMZZzzGpkNEnH+WawwwhRUNrD9UQXiYiVm5SaT5mFiqzubktTdeJmfv31mgN2JSJ/+W9jKEPaNu4bwrftCn6W2FCFXdCQC+9MYNBgpbvC7CuMvv7JjBPr4XAKXUUqApI1qd+k3NXh/K1lUpQFkvnLc3BVuZveXdDtwM37m5v8vjiyD9HQcVKXPv6/LwQl8CQFu3vK2rDe0d48t7jY1aLwOW+VCeblNKbexqhOxvwVbmYCsvBF+Zg628IGXuC0qpLnec+hIAioCWq3VkAf+/vfsNraqO4zj+/tCyshCLMMwJGgglVighI6En84GRbD0JFlRSPRH6T1GaUE+Doj9Q1AO1BIcRZjTCSrOgR0qkmcqKhoHNVhOiP9QDGX16cH6jtXbvPYuuv7Od7wvGvffs/C6fsbPzu+e38/v+vi+5z5wSbUMIIWRQZibwZ8AySUslzQH6gIFJ+wwAd6nQBfxie6Rk2xBCCBm0vAKwPSbpfuBDils5t9s+IWlj+v5rwF6KO4CGKG4DvbtZ27b8JOW0dYipTWZa5pmWF2Ze5pmWFyLzuTDtvJWcCBZCCKH9ohhcCCHUVHQAIYRQU7XtACQ9JsmSKj1FVdKzkr6S9KWkdyTNz52pEUnrJH0taUjSptx5mpG0WNInkgYlnZDU5kWZ/z+SzpN0RNJ7ubOUIWm+pN3pOB5Mk0srS9Ij6Zg4LmmXpMpN8Ze0XdKopOMTtl0mab+kb9Ljpa3ep5YdgKTFFOUpTuXOUsJ+YIXt6yjKamzOnGdKqezHK8DNwHLgdknLm7fKagx41PY1QBdwX8XzTvQQMJg7xDS8BHxg+2rgeiqcXdIi4EHgBtsrKG5e6cubakpvAOsmbdsEHLC9DDiQXjdVyw4AeAF4nAaT0qrE9j7bY+nlQYq5FFW0GhiyfdL2WeBNoDdzpoZsj4wXLLT9G8VJaVHeVK1J6gRuAbbmzlKGpHnATcA2ANtnbf+cN1VLHcBFkjqAuVRw7pLtT4GfJm3uBXak5zuAW1u9T+06AEk9wGnbR3Nn+Q/uAd7PHaKBRuVAKk/SEmAlcChvklJepPjw8mfuICVdBZwBXk/DVlslVbZMru3TwHMUowMjFHOa9uVNVdoVaf4V6XFBqwazsgOQ9FEav5v81QtsAZ7KnXGiFnnH99lCMWzRny9pU6XLflSJpEuAt4GHbf+aO08zktYDo7Y/z51lGjqAVcCrtlcCv1NiaCKXNG7eCywFrgQulnRH3lTtMyuXZrK9dqrtkq6l+MUeTcsadgKHJa22/cM5jPgPjfKOk7QBWA90u7oTN8qUDKkUSedTnPz7be/JnaeENUBPKr9+ITBP0k7bVT5BDQPDtsevrnZT4Q4AWAt8a/sMgKQ9wI3AzqypyvlR0kLbI5IWAqOtGszKK4BGbB+zvcD2EttLKA7OVTlP/q2kBXWeAHps/5E7TxMzquxHWsRoGzBo+/ncecqwvdl2Zzp2+4CPK37yJ/1tfSdpvFJlN9B0PZDMTgFdkuamY6SbCv/TepIBYEN6vgF4t1WDWXkFMMu8DFwA7E9XLQdtb8wb6d8qWPajlTXAncAxSV+kbU/a3psx02z1ANCfPhicJJWKqSLbhyTtBg5TDLkeoYIlISTtolhz5XJJw8DTwDPAW5LupejIbmv5PtUdUQghhNBOtRoCCiGE8LfoAEIIoaaiAwghhJqKDiCEEGoqOoAQQqip6ABCCKGmogMIIYSa+gtiLWWPbGnDiQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD8CAYAAABkbJM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVfrA8e+bRgghBEJoIfRQAgSE0FVAFMGGBRVs2BZRsa66uL9ddYu7LrbddREWBcWKCKKIKKJ0qaHXQAiBBEISAoQUUuf8/rgDZkPKhExmMsn7eZ48M3Pvufe+Mwx5c8o9R4wxKKWUUhXxcncASimlPIMmDKWUUg7RhKGUUsohmjCUUko5RBOGUkoph2jCUEop5RCHEoaIjBKRWBGJE5Eppey/W0R22n/WiUivio4VkSYiskxEDtofGzvnLSmllKoOFSYMEfEGpgGjgUhgvIhElih2GBhqjIkC/gLMdODYKcDPxpgI4Gf7a6WUUjWUIzWM/kCcMSbeGJMPzAXGFC9gjFlnjDltf7kBaO3AsWOAOfbnc4CbL/1tKKWUqm4+DpQJAxKLvU4CBpRT/iHgeweObW6MSQYwxiSLSLPSTiYiE4GJAA0aNOjbtWtXB0JWSqlijA2Sd0LDFtZPKc4VFBGXmkWbJgE0qu/r4gCr15YtW04aY0Kreh5HEoaUsq3U+UREZDhWwri8sseWxRgzE3sTV3R0tImJianM4UopBSd2wYzLYey/oMdtpRb5YXcykz7ZysInLqdHWCMXB1i9ROSIM87jSJNUEhBe7HVr4HgpAUUB7wNjjDHpDhybIiIt7ce2BFIrF7pSSjkoLdZ6DC27heLoqRwAwpsEuCIij+RIwtgMRIhIexHxA8YBi4oXEJE2wFfAvcaYAw4euwiYYH8+Afjm0t+GUkqVIy0WxAtCOpVZ5OipHBrV9611zVHOVGGTlDGmUEQmA0sBb2C2MWaPiEyy758BvASEAO+KCEChMSa6rGPtp34NmCciDwFHgdud/N6UUspyMhYatwefemUWSTx1jjZauyiXI30YGGOWAEtKbJtR7PnDwMOOHmvfng6MqEywpSkoKCApKYnc3NyqnqrW8vf3p3Xr1vj66l9Oqo5K2VtucxRA4qkcurZs6KKAPJNDCaMmS0pKomHDhrRr1w577UYVY4whPT2dpKQk2rdv7+5wlHK9vCxIj4OeY8ssYrMZkk6f45ruzV0YmOfx+KlBcnNzCQkJ0WRRBhEhJCREa2Cq7krZAxhoEVV2kcxc8ots2iRVAY9PGIAmiwro56PqtBM7rceWZSeMo+n2EVKNNWGUp1YkDKWUKlPyDqjfBILCyixyfkit1jDKpwmjlkhISOCzzz5zdxhK1Twndlq1i3Jq2omnz+El0Cq4vgsD8zyaMGoJTRhKlaKoAFL3ldt/AdYIqZaN6uPno78Sy6OfjhMkJCTQtWtXHn74YXr06MHdd9/NTz/9xJAhQ4iIiGDTpk1s2rSJwYMHc9lllzF48GBiY607T9966y0efPBBAHbt2kWPHj3Iycnh0KFDjBo1ir59+3LFFVewf/9+AO6//36efPJJBg8eTIcOHZg/fz4AU6ZMYc2aNfTu3Zu3337bPR+EUjVNWiwU5UPLXuUWO3oqh/AmWruoiMcPqy3uT9/uYe/xs049Z2SrIF6+sXuF5eLi4vjyyy+ZOXMm/fr147PPPmPt2rUsWrSIv/3tb3z00UesXr0aHx8ffvrpJ37/+9+zYMECnn76aYYNG8bChQt59dVX+e9//0tAQAATJ05kxowZREREsHHjRh577DGWL18OQHJyMmvXrmX//v3cdNNNjB07ltdee4033niDxYsXO/X9K+XRznd4O1DDGNalynPz1Xq1KmG4U/v27enZsycA3bt3Z8SIEYgIPXv2JCEhgYyMDCZMmMDBgwcREQoKCgDw8vLiww8/JCoqikceeYQhQ4aQlZXFunXruP32X29+z8vLu/D85ptvxsvLi8jISFJSUlz7RpXyJMk7wTcAQjqWWSQnv5DUzDzt8HZArUoYjtQEqku9er9OOeDl5XXhtZeXF4WFhfzxj39k+PDhLFy4kISEBIYNG3ah/MGDBwkMDOT4cWteRpvNRnBwMNu3b6/wWsZUavJfpeqWEzuheXfw8i6zSHxaNgAdQgNdFZXH0j4MF8nIyCAszBrW9+GHH/7P9qeeeorVq1eTnp7O/PnzCQoKon379nz55ZeAlRR27NhR7vkbNmxIZmZmtcWvlMex2axpzStojoo/eT5hNHBFVB5NE4aLvPDCC7z44osMGTKEoqKiC9ufeeYZHnvsMTp37sysWbOYMmUKqampfPrpp8yaNYtevXrRvXt3vvmm/Ml8o6Ki8PHxoVevXtrprRTAmQTIO1vuDXsAh9OyEYF2IZowKiKe1KRR2gJK+/bto1u3bm6KyHPo56TqnD1fw5cT4DcrIKxPmcWemruNmITT/DLlKhcG51oissUYE13V82gNQylVO53YCeINzSLLLRaflq3NUQ7ShKGUqp2Sd1pTmvv6l1nEGMPhk9l0aKoJwxGaMJRStdP5KUHKkZaZR1ZeoY6QcpAmDKVU7ZOZAlkpOkLKyTRhKKVqHwemNIdf78For01SDnEoYYjIKBGJFZE4EZlSyv6uIrJeRPJE5Lli27uIyPZiP2dF5Gn7vldE5Fixfdc5720ppeq0C1OC9Cy3WHxaFv6+XrRqpPNIOaLChCEi3sA0YDQQCYwXkZLDDk4BTwJvFN9ojIk1xvQ2xvQG+gI5wMJiRd4+v9++9nedk5CQQI8ePdwdhlK1S/JOaNwO/BuVW+zwyWzahTTAy0sXGXOEIzWM/kCcMSbeGJMPzAXGFC9gjEk1xmwGCso5zwjgkDHmyCVHq5RSjjixs8LaBVh9GNp/4ThHEkYYkFjsdZJ9W2WNAz4vsW2yiOwUkdki0vgSzlkjnJ/efMKECURFRTF27FhycnL485//TL9+/ejRowcTJ068MO/Tli1b6NWrF4MGDWLatGkXzlNUVMTzzz9Pv379iIqK4r///a+73pJSniv3LJyKhxblT2meX2jj6KkcOjTVEVKOcmTywdLqapW6PVxE/ICbgBeLbZ4O/MV+rr8AbwIPlnLsRGAiQJs2bcq/0PdTrLljnKlFTxj9WoXFYmNjmTVrFkOGDOHBBx/k3XffZfLkybz00ksA3HvvvSxevJgbb7yRBx54gHfeeYehQ4fy/PPPXzjHrFmzaNSoEZs3byYvL48hQ4YwcuRI2rdv79z3pFRtlrLbeqygwzvxdA5FNqMd3pXgSA0jCQgv9ro1cLyS1xkNbDXGXJiL2xiTYowpMsbYgPewmr4uYoyZaYyJNsZEh4bW3Pnqw8PDGTJkCAD33HMPa9euZcWKFQwYMICePXuyfPly9uzZQ0ZGBmfOnGHo0KGAlUjO+/HHH/noo4/o3bs3AwYMID09nYMHD7rl/SjlsZIdWwMjLjULgI7NtIbhKEdqGJuBCBFpDxzDalq6q5LXGU+J5igRaWmMSba/vAXYXclzXsyBmkB1kRLrBYsIjz32GDExMYSHh/PKK6+Qm5uLMeaisucZY3jnnXe49tprXRGyUrXTiZ3QIBQatii32MEUa3bnCE0YDquwhmGMKQQmA0uBfcA8Y8weEZkkIpMARKSFiCQBzwJ/EJEkEQmy7wsArgG+KnHqqSKyS0R2AsOBZ5z2rtzg6NGjrF+/HoDPP/+cyy+/HICmTZuSlZV1YSnV4OBgGjVqxNq1awH49NNPL5zj2muvZfr06RcWVzpw4ADZ2dmufBtKeb7knVbtoow/zM6LTcmideP6NKhXq5YFqlYOfVL2Ia9LSmybUez5CaymqtKOzQFCStl+bynFPVa3bt2YM2cOjzzyCBERETz66KOcPn2anj170q5dO/r163eh7AcffMCDDz5IQEDA/9QmHn74YRISEujTpw/GGEJDQ/n666/d8XaU8kyFeZC2DyKurrDowZRMujRv6IKgag+d3twJEhISuOGGG9i9u+qtatWlJnxOSlW749th5lAY+wH0uLXMYgVFNiJf+oGHLu/AlNFdXRige+j05kopVdKFKUHKH1KbcDKbgiJDlxbaf1EZmjCcoF27djW6dqFUnXFiF/g1hMblD0U/kGKNkIpopk1SlVErEoYnNau5g34+qs5I3gkteoBX+b/aYlMy8RLopCOkKsXjE4a/vz/p6en6S7EMxhjS09Px9y97ERmlagWbzbppr4L7L8Dq8G4b0gB/X28XBFZ7ePx4statW5OUlERaWpq7Q6mx/P39ad261EFsStUeJ2MhPwta9a6w6P4TOkLqUnh8wvD19dWpM5RSkLjRegwfUG6xrLxCEtKzueWyS5kSr27z+CYppZQCIHEzBIRAkw7lFos9cRZjoHurIBcFVntowlBK1Q6JG6F1/wrv8N57/CwAkZowKk0ThlLK8+WcgvSDEN6vwqJ7k8/SOMCXFkE6EKSyNGEopTxf0mbrsYL+C7BqGJGtgsqcBFSVTROGUsrzJW4C8YZWl5VbrLDIxv4TmUS21OaoS6EJQynl+RI3Woud+ZW/GNLhk9nkFdq0/+ISacJQSnm2okI4thXCS12D7X/sTMoAoHurRtUdVa2kCUMp5dlS90BBtkP9FzuTztDAz5uOoTolyKXQhKGU8myJm6zH1hWPkNqRlEGPsEZ4e2mH96XQhKGU8myJmyCwBQS3KbdYfqGNvcln6RUe7KLAah9NGEopz5a0ybr/ooJhsgdSMskvtBHVWvsvLpUmDKWU58pKhdMJDvVfbE88A0Cv1lrDuFQOJQwRGSUisSISJyJTStnfVUTWi0ieiDxXYl+CiOwSke0iElNsexMRWSYiB+2Pjav+dpRSdcr5/gsHO7wbB/jSunH9ag6q9qowYYiINzANGA1EAuNFJLJEsVPAk8AbZZxmuDGmd4k1ZacAPxtjIoCf7a+VUspxiRvB26/CJVkBth09Q6/wYL3DuwocqWH0B+KMMfHGmHxgLjCmeAFjTKoxZjNQUIlrjwHm2J/PAW6uxLFKKWXVMFr2Bp965RY7k5PPwdQsottqQ0ZVOJIwwoDEYq+T7NscZYAfRWSLiEwstr25MSYZwP7YrLSDRWSiiMSISIwukqSUuqAwH45vc+iGvW1Hrf6Lvm2bVHdUtZojCaO0+ltl1kMdYozpg9Wk9biIXFmJYzHGzDTGRBtjokNDQytzqFKqNjuxE4ryHEoYMUdO4e0l9NYhtVXiSMJIAsKLvW4NHHf0AsaY4/bHVGAhVhMXQIqItASwP6Y6ek6llPr1hj0HEkbCabq3CqK+n67hXRWOJIzNQISItBcRP2AcsMiRk4tIAxFpeP45MBLYbd+9CJhgfz4B+KYygSul6rjEjdCoDQS1LLdYQZGNHUln6Kv9F1VW4ZrexphCEZkMLAW8gdnGmD0iMsm+f4aItABigCDAJiJPY42oagostI9K8AE+M8b8YD/1a8A8EXkIOArc7ty3ppSq1ZI2Q5uBFRbbfSyD3AIb0dp/UWUVJgwAY8wSYEmJbTOKPT+B1VRV0lmg1PFuxph0YITDkSql1HkZSXD2mEP3X2yIPwVA//aaMKpK7/RWSnmeSkw4uO7QSTo3DyS0YflDb1XFNGEopTxP4ibwqW8tmlSO/EIbMQmnGdQhxEWB1W6aMJRSnidpE4T1AW/fcovtTDrDuYIiBnXUhOEMmjCUUp6l4Bwk73Do/ov1h9IRgQHtNWE4gyYMpZRnOb4dbIUO3X+xNu4kXVsE0biBnwsCq/00YSilPEvCGkAqHFKbmVvAliOnGdpZZ4hwFk0YSinPEr/K6uwOKH+Y7LpD6RTaDMO6aMJwFk0YSinPkZ9tdXh3GFZh0ZWxaQTW89E7vJ1IE4ZSynMcXQ9F+dBhaLnFjDGsPpDGkE4h+Hrrrzln0U9SKeU54ldZCya1GVRusQMpWRw7c46hnUtdNUFdIk0YSinPEb/SGh3l16DcYsv2ngDg6m6aMJxJE4ZSyjNkp8OJXQ71X/y4N4XL2gTTLMi/2sOqSzRhKKU8Q8JqwFTYf3H8zDl2JmUwMrKFa+KqQzRhKKU8Q/wq8GsIrfqUW+ynfSkAjOze3BVR1SmaMJRSnuHwKmh3OXiXvyrD4h3JRDQLpGNooIsCqzs0YSilar4zR+FUfIX9F0mnc9iUcIoxvVu5JKy6RhOGUqrmi19lPVbQf/HN9uMAjOkdVt0R1UmaMJRSNV/8SghsDqFdyyxijOGb7cfo27Yx4U0CXBdbHeJQwhCRUSISKyJxIjKllP1dRWS9iOSJyHPFtoeLyAoR2Scie0TkqWL7XhGRYyKy3f5znXPeklKqVjHG6r9oPxREyiy2LzmTAylZ3KzNUdWmwjW9RcQbmAZcAyQBm0VkkTFmb7Fip4AngZtLHF4I/NYYs1VEGgJbRGRZsWPfNsa8UeV3oZSqvVL3QnaaA81Rx/DxEq6P0oRRXRypYfQH4owx8caYfGAuMKZ4AWNMqjFmM1BQYnuyMWar/XkmsA/QxkWllOPO91+0Lzth5BfaWLD1GMO6hNJE176oNo4kjDAgsdjrJC7hl76ItAMuAzYW2zxZRHaKyGwRKXVKSRGZKCIxIhKTlpZW2csqpTxd/Epo0hGCw8sssnTPCU5m5XH3gLaui6sOciRhlNZoaCpzEREJBBYATxtjzto3Twc6Ar2BZODN0o41xsw0xkQbY6JDQ3Vee6XqlKICOPJLhcNpP9lwhPAm9blSF0uqVo4kjCSgeGpvDRx39AIi4ouVLD41xnx1frsxJsUYU2SMsQHvYTV9KaXUr45thfyscvsvDqRksvHwKe7q3xZvr7I7xVXVOZIwNgMRItJeRPyAccAiR04uIgLMAvYZY94qsa9lsZe3ALsdC1kpVWfErwQE2l1RZpFPNxzBz9uLO6JbuyysuqrCUVLGmEIRmQwsBbyB2caYPSIyyb5/hoi0AGKAIMAmIk8DkUAUcC+wS0S220/5e2PMEmCqiPTGat5KAB5x7ltTSnm8w6ugZa8yl2PNyClg/pYkruvZgpDAei4Oru6pMGEA2H/BLymxbUax5yewmqpKWkvpfSAYY+51PEylVJ2Tnw2Jm2DQY2UW+Wh9Atn5RUy8sqPr4qrD9E5vpVTNdGQ92ArK7PA+l1/EB+sSGN4llMhWQS4Nra7ShKGUqpniV1jLsYYPLHX3F5uPcio7n8eGd3JxYHWXJgylVM104AdrOnO/i+eFyiss4r01h+nXrjH92pXev6GcTxOGUqrmSTsA6XHQpfQp5j7beJRjZ87xxFURLg6sbtOEoZSqeWK/sx67jL5oV1ZeIf9ZHsfgjiFcEdHUxYHVbZowlFI1T+z31nDaRhcPvpy15jDp2fm8MKorUs7stcr5NGEopWqWrFRrOG2X6y/alZaZx3tr4hnVvQW9w4PdEFzdpglDKVWzHPgBMND14v6L177fT15hES+M6uL6uJQmDKVUDbN/CTRqA817/M/mLUdOsWBrEg9f0YEOoYFuCq5u04ShlKo58rOt+y+6jP6f1fWKbIY/fr2Hlo38eeIqve/CXTRhKKVqjviVUJh7UXPUZxuPsDf5LP93fTcC/Bya0UhVA00YSqmaY/8S8G8EbYdc2HQiI5epS2MZ3DGE63u2LOdgVd00YSilagZbkdXhHTESvH0BMMYw5audFBTZ+NstPXUYrZtpwlBK1QyJmyDn5P/crPflliRWxqbxu1Fdade0gRuDU6AJQylVU8R+B16+0OkaAJIzzvGXb/fSv30TJgxq597YFKAJQylVExhj9V+0vwL8gzDG8LsFuyi0GV4fG4WXLr1aI2jCUEq538mDcOrQhckG58UksvpAGlNGd6VtiDZF1RSaMJRS7ldsssHjZ87x18X7GNihCfcObOveuNT/cChhiMgoEYkVkTgRmVLK/q4isl5E8kTkOUeOFZEmIrJMRA7aHxtX/e0opTzS/iXQshcmKIwpX+2iyBim3tZLm6JqmAoThoh4A9OA0UAkMF5EIksUOwU8CbxRiWOnAD8bYyKAn+2vlVJ1TVYqJG2GLtfzxeZfm6LahFy8cJJyL0dqGP2BOGNMvDEmH5gLjClewBiTaozZDBRU4tgxwBz78znAzZf4HpRSniz2e8CQEjaCv35nNUXdM0CbomoiRxJGGJBY7HWSfZsjyju2uTEmGcD+2Ky0E4jIRBGJEZGYtLQ0By+rlPIYsd9jGoXz3KpCbMbw+lhtiqqpHEkYpf3LGQfPX5VjrcLGzDTGRBtjokNDQytzqFKqpjt3Bg4t50DjoayJS+fF0V0Jb6JNUTWVIwkjCQgv9ro1cNzB85d3bIqItASwP6Y6eE6lVG2xbxEU5fHy4UgGdmjC3doUVaM5kjA2AxEi0l5E/IBxwCIHz1/esYuACfbnE4BvHA9bKVUbmJ1fcMInjB22DvzjNr1Br6arcJ5gY0yhiEwGlgLewGxjzB4RmWTfP0NEWgAxQBBgE5GngUhjzNnSjrWf+jVgnog8BBwFbnf2m1NK1WAZSUjCWj4rGMvzeoOeR3BoYnljzBJgSYltM4o9P4HV3OTQsfbt6cCIygSrlKo9smLmEggcajGadwa3c3c4ygG6EolSyuWMMZzZ+AkHTQTPjhulTVEeQqcGUUq53NpfVtE6/zDZnW+lo67P7TE0YSilXCozt4CE5bMpxJuBNz7s7nBUJWjCUEq51D+XxXJ10Rqyw4fhE1Tq/bqqhtI+DKWUy+w9fpb9G76npe8p6H+Xu8NRlaQ1DKWUS9hshj98vYvb/dZhfBtcWPtCeQ5NGEopl5gXk8ieo6lc770JiRwDfjoFiKfRhKGUqnZncwt4fWksE1scwLcwC6L0Pl1PpAlDKVXtpi2P41ROPg83ioHA5tB+qLtDUpdAE4ZSqlolnMxm9i+HuTcqiEaJK6Dn7eDl7e6w1CXQhKGUqlZ//34fvt5ePBe+D2wFEHWHu0NSl0gThlKq2qw7dJKle1J4fHgngg58BU27QIsod4elLpEmDKVUtbDZDK9+t4+w4Po83F3g6HqrdiE6b5Sn0oShlKoW3+1KZs/xszx/bRfq7ZgD4g29xrs7LFUFnpUwjM3dESilHFBQZOPNH2Pp2qIhN3VvAls/hq7XQaMwd4emqsCzEkZGkrsjUEo54MuYJBLSc3huZBe89n4N505BP51o0NN5VsLISYftn7k7CqVUOXILivjXzwfo27YxI7o1g83vQ0iE3ntRC3hWwqjXEBY/Cyl7Ki6rlHKLOesSSDmbxwvXdkGSt8OxGKt2oZ3dHs+hhCEio0QkVkTiRGRKKftFRP5t379TRPrYt3cRke3Ffs7a1/tGRF4RkWPF9lU8E1njtuAfBHPvgqy0Sr5VpVR1yzhXwLsrDzGsSygDOoTA5lngGwC9xrk7NOUEFSYMEfEGpgGjgUhgvIhElig2Goiw/0wEpgMYY2KNMb2NMb2BvkAOsLDYcW+f329f+7uCaH3hzk8hMwU+vxPysyt+h0opl5m1Jp6McwU8N7ILnDsNu+Zbd3bXD3Z3aMoJHKlh9AfijDHxxph8YC4wpkSZMcBHxrIBCBaRliXKjAAOGWOOVCni8H4wdhYc3wbzH4KiwiqdTinlHGdzC/hgXQKje7SgR1gjq7+x8Jx2dtcijiSMMCCx2Osk+7bKlhkHfF5i22R7E9ZsEWlc2sVFZKKIxIhITFqavRmq6/Uweioc+B6+fwGMceBtKKWq08frj5CZW8jjwzuBzWY1R4UPgJZ6Z3dt4UjCKK2nquRv6HLLiIgfcBPwZbH904GOQG8gGXiztIsbY2YaY6KNMdGhoaG/7uj/GxjyNMTMgrVvO/A2lFLV5Vx+EbPWHmZYl1CrdnF4JZw6pLWLWsaRJVqTgPBir1sDxytZZjSw1RiTcn5D8eci8h6w2MGYfzXiZTh7DH7+EwSFQa87K30KpVTVfb7pKKey863aBVi1i4CmEFmy9Vp5MkdqGJuBCBFpb68pjAMWlSizCLjPPlpqIJBhjEkutn88JZqjSvRx3ALsrnz0XjBmGrS7Ar55HOJXVvoUSqmqySssYubqePq3b0K/dk3gTCLELoE+94FPPXeHp5yowoRhjCkEJgNLgX3APGPMHhGZJCKT7MWWAPFAHPAe8Nj540UkALgG+KrEqaeKyC4R2QkMB565pHfgUw/u/ASaRsDceyBx8yWdRil1aRZuPcaJs7lMPl+72PKh1a8Y/YBb41LOJ8aDOoyjo6NNTExM6TszjsGcG6z7M+5ZAG0GuDY4peqgwiIbI95aRZC/L4smD0GKCuDtSAiLhrvmujs8ZSciW4wx0VU9j2fd6V2eRmFw/3fQsDl8ciscWefuiJSq9b7blcyR9BweH94JEYG930B2mnZ211K1J2EABLWykkZQK/jkNji8xt0RKVVr2WyGd1ccIqJZICMjm1vNUL/8E5p2ho5XuTs8VQ1qV8IAaNjCShrBbeDT27UjXKlq8tO+FGJTMnlseEe8vAQOLIWU3XD5s9aAFFXr1M5/1cBmMGExNOkAn90JcT+7OyKlahVjDNNWHiK8SX1ujGpl1S7WvGH9odZzrLvDU9WkdiYMgMBQmPCtNa3y5+NhX+Vv81BKle6XuHR2JJ5h0tCO+Hh7weHVkLQZhjwF3r7uDk9VE49KGJUe0NUgBCYsghY94Yt7YP00nUZEKSeYtiKO5kH1GNu3tbVhzZsQ2Bx63+PewFS18qiEkXQmp/IHBTSB+xdDtxth6e9hyXM6YaFSVbDlyGnWx6fzmys6UM/HG5Ji4PAqGDQZfP3dHZ6qRh6VMLJyC7HZLqGG4Fsfbp9jVZc3vw+fj4O8TOcHqFQdMG1FHI0DfLlrQBtrw5o3wT8Yoh90b2Cq2nlUwii0GfYcP3tpB3t5wTV/hhv+CYeWw+zR1s1+SimH7TmewfL9qTw4pD0Bfj7W6pexS2Dgo1Av0N3hqWrmUQkDYGVsatVOEP0A3D0PTifA+yOsdTWUUg55d+UhAuv5cN+gdtaGNW+CXyD0n+jWuJRreFTCqO/rzaoDTliatdPV8NBSEG+Yda01s6Z2hitVrkNpWSzZlcy9g9rSKMAX0g/BnoXQ7yGrr1DVeh6VMBr6+7D16MDTlHIAACAASURBVGkycgqqfrLm3eGRVdDucvjuWVjwkPZrKFWOGSsP4eftxUOXt7c2rH3bWjZ54OPuDUy5jMclDJuBtXEnnXPCBk3h7vlw1R+tv5RmDoMTlZ9lXanaLul0Dgu3HWN8/zY0DawHGUmwY641hXnD5u4OT7mIRyWM+n4+BPn7VL0fozgvL7jyOesmv7wsq19jyxxtolKqmPdWxwMw8coO1oZf/g0YGPKk+4JSLudRCUOAKzuHsiI2laJLGV5bnnaXw6S10GYQfPskfPUbOHfauddQygOlZeYxd3Mit/YJo1VwfTh1GGJmQ6/x1lQgqs7wqIQBcE1kc05m5bM9sRp+mQeGWmtpDP+D1UQ1bQDsX+L86yjlQd5fG09BkY1Hh9kXSPr5z+DlA8N/797AlMt5XMIY1qUZPl7Cj3tTKi58Kby8Yejz8Jvl0KAZzB0PCx6GnFPVcz2larCMnAI+WX+E66Na0b5pA0jaAnu+gsGTrWUEVJ3icQmjUX1fBnYIYVl1JYzzWvayksaw39trG/1hb8mlzJWq3T5cl0B2fhGPDeto9est+yMENLVmTVB1jkMJQ0RGiUisiMSJyJRS9ouI/Nu+f6eI9Cm2L8G+dvd2EYkptr2JiCwTkYP2x8aOBn1NZHPi07I5lJbl6CGXxscPhv0OJq6y/pqady98eT+cTa7e6ypVA2TnFfLBusNc3a0Z3VoGQez3cOQXGDYF6jV0d3jKDSpMGCLiDUwDRgORwHgRiSxRbDQQYf+ZCEwvsX+4MaZ3iTVlpwA/G2MigJ/trx1ydaQ1jK/aaxnntegBD/9sDb/d/x280xfWvAWFea65vlJu8NnGo5zJKeCx4Z2sCTt/ehlCOkHf+90dmnITR2oY/YE4Y0y8MSYfmAuMKVFmDPCRsWwAgkWkZQXnHQPMsT+fA9zsaNBhwfXpERbED7tPOHpI1Xn7WsNvH98IHYbBz3+yOsVjv9chuKrWyS0oYuaaeAZ3DKFPm8aw7SM4eQCu/pOud1GHOZIwwoDEYq+T7NscLWOAH0Vki4gUn3CmuTEmGcD+2Ky0i4vIRBGJEZGYtLRfpwW5rmdLtieeIen0JUx5XhVNOsD4z+Cer8Dbz5r59tOxkHbAtXEoVY2+3JJEWmYejw/vZM2AsOLv1pDzrte7OzTlRo4kDCllW8k/qcsrM8QY0wer2epxEbmyEvFhjJlpjIk2xkSHhoZe2H5DT2uExpJdbupP6DQCHv0Frv07JG6C6YPgu+e0f0N5vPxCGzNWHqJPm2AGdwyBdf+B7FS45i8gpf1XV3WFIwkjCQgv9ro1cNzRMsaY84+pwEKsJi6AlPPNVvbHSt2+3SYkgKjWjVi8042/oL19YdBj8MRWuOxe2PIB/Ls3LP0/yHLCJIlKucHCbUkcO3OOJ0ZEIFkpsO7fEHkzhPdzd2jKzRxJGJuBCBFpLyJ+wDig5PjSRcB99tFSA4EMY0yyiDQQkYYAItIAGAnsLnbMBPvzCcA3lQ3++p4t2ZmUwdF0FzdLlRQYCjf+EybHQPdbYcO78K9e1g1Oev+G8iCFRTbeXXmInmGNGNY5FFb8DYoK4OqX3R2aqgEqTBjGmEJgMrAU2AfMM8bsEZFJIjLJXmwJEA/EAe8Bj9m3NwfWisgOYBPwnTHmB/u+14BrROQgcI39daVcH2X1qy/eVbLC4yZN2sMt0+HxTdBllDWS6l+9YPmrkO2kCROVqkbf7jzOkfQcJl/VCUneDts+tqYvb9LB3aGpGkCMB43wiY6ONjExMf+z7dZ3fyE7r4gfnr4CqWntqyl7rL/Q9i8GH3/ofZe17nFIR3dHptRFimyGkW+vwsfLi++fGITX+1dBVor1B1D9YHeHp6pARLaUuK3hknjcnd4l3dqnNbEpmZe+dGt1at4dxn0Kj2+GqDth26fWPRxz77Y6ypWqQX7YfYJDadlMvqoTXpv+Cyd2wuh/aLJQF3h8wrgxqhV+Pl7M35Lk7lDKFtoZbvo3PLPbupcjYS3MugbevwZ2fAEFue6OUNVxNpvhneUH6RDagOvCC2DFqxBxrdXZrZSdxyeMRgG+XNOtOYt2HCe/0ObucMoX2Ayu+gM8uxdGT4WcdFg4Ed7qao2sOnnQ3REC1i+PtMw84tOyOJqew6nsfDyp6VJV3k/7Uth/IpPHh3bE+/vnrY3Xv6HDaNX/8HF3AM5wW98wvtuVzMrYVEZ2b+HucCrm1wAGPAL9J8Lh1dbaAhtnwPr/QLsrIPoB6HI9+Pq7JJzcgiJWxqax6kAa246eJi41i8IS640E1vMhonkgA9qHMKxLKP3bNcHLS3+Z1AY2m+Htnw7SNiSAm+vFwMGlMPJVXetCXaRWJIwrI0IJbViPeTGJnpEwzhOBDkOtn8wU2P4JbPkQ5j8I/o2s5oCoO607bL2cXxmMS81k1toEFm0/RnZ+EQ39fbisTWOGd21Gy0b+BPn7UmQznDlXQOKpHHYfy+D9NfHMWHWIVo38uaNfOPcNakeTBn5Oj025zve7T7Av+Szv3NoB76WTrJmaB0yq+EBV53j8KKnzXl+6n+krD7Hmd1cRFlzfxZE5ka0I4lfCznmw71soyIZGbSDqDit5hHau8iXi07J4fWks3+8+QT0fL8b0bsVNvcIY2KEJPt7lJ6bsvEJ+2pfCgq3HWH0gjfq+3tw/pB2PD+9EYL1a8fdHnXJ+ZJSXCEs7f4PXlg+saf1bXebu0JQTOWuUVK1JGEmnc7hi6gomD+/Eb0d2cXFk1SQvy5odd+cXEL8CjA1a9IRuYyDyJgit3PvMLSjirWUHmL32MH4+Xjx8RQfuH3zpNYSDKZm8u/IQC7cdI7RhPX43qiu39QmrecObVZm+2prEs/N28PkoYdDKu2DgozDq7+4OSzmZJoxSPPThZnYey2DdlKvwreAvZY+TeQJ2L4C930DiRmtbaFfodpOVPJr3KLeDctPhU/xuwU4On8xmXL9wfjuyC6EN6zkltO2JZ/jTt3vYdvQMw7uE8o/bomgW5Jr+F3XpCopsjHhzFcH14Bvf3yO5Z63ZmOsFujs05WSaMEqxfH8KD34Yw7S7+ly4C7xWOnsc9i2GfYusBW2MDRq3g86joPO10HYI+FjJoLDIxts/HWDaikOEN6nPP26NYnCnpk4PyWYzfLzhCH9bso8AP29eH9vrwrolqmb6bONRfr9wFyv7rKHd3ukw7nPoep27w1LVQBNGKYpshmFvrKB5Q3/mPzrYhZG5UVaadSd57PdweBUU5oJfIHQcztk2I3h+ezOWHoE7o8N5+aZIAvyqt58hLjWLp7/Yxu5jZ3lqRARPjYjQ0VQ1UG5BEcPfWMmI+gf5y5kpyGV3w5hp7g5LVRNNGGX48JfDvPLtXhY8Opi+bR1e9bV2yM+xhuke+IGC/d/jm20tMHUmqAvBPa6FjsOtEVe+1TsoILegiP9buJsFW5O4ultz3r6zFw39ddGdmmT6ykPM+CGGTU1epp5/ADyyWpuiajFNGGXIzitk8GvLGdwxhOn39HVRZDXLliOneeCDjUT5JPLWZak0S1sPRzeArcCa06rNIOh4lZVAKuj7uFTGGOasS+Av3+2jU2ggHz7Yj5aNPHj0Wi2SnpXHsNdX8EGDaUTnroOHlkFYH3eHpaqRsxJGrRsH2aCeD/cMbMP0lYc4kp5N25AG7g7JpVYdSGPSx1to0cifvz94N82aBFg78rLgyDo4tNwacbXsj7AMaNDMWnL2fAJp6Jz7WESE+4e0J6J5Qx75eAu3vbuOOQ/2J6J5Q6ecX126f/98kOuLfiY6Z7W15KomC+WgWlfDAEg9m8vl/1jBbX3D+PutUS6IrGb4dsdxnp23nYhmDZnzYP/yR0FlHLPu9zi03HrMsU+/3izy1+TRdohTmq/2HM/g/g82k19oY9aEaKLbNanyOdWlOZSWxaS35/Kd///h17Y/3PtNtdwUqmoWbZKqwMvf7ObTjUdZ8dwwws//lV2LfbLhCH/8Zjf92jbh/fujCapMn4HNBim74NAKK4EcXQ9F+eBdD9oOthJIpxFWMrnE5qvEUzlMmL2J5Ixc3p8QzZBqGKmlKjZpznqeiH+UbvXP4PXYOghq5e6QlAtowqjAiYxcrpy6glv7hPHabbW3lmGMYdqKON748QAjujZj2t198Pf1rtpJ83PszVc/Wwkkbb+1PbCFvfZhr4E0qNwv/bTMPO6dtZH4k9n8996+DO/SrGpxqkpZczCNPXOeZpLPYrjzU+h2g7tDUi6iCcMB52sZy387jDYhta+WYbMZXl2yj1lrD3PLZWFMHRtVPTcsZiTZax8/W81X505b21v2siePEdBmoLXGeQVOZ+dz7+yNxJ7IZNpdfTxr7i8PlldYxB/eeIfXc1+msM8D+Nz0T3eHpFxIE4YDTmTkMvT1FYzs3oJ3xteuuXEKi2z8bsEuFmxN4v7B7XjphkjX3O9gK4Lk7RC33Kp9JG0CWyH4B0OX0dD1BiuJ+JWdoDPOFTBh9iZ2H8vgn+N6c0OUNotUt4+XrOSGjXfjF9ySBo+vLvffR9U+Ll1xT0RGiUisiMSJyJRS9ouI/Nu+f6eI9LFvDxeRFSKyT0T2iMhTxY55RUSOich2+4/TbzFt0cif31zRgW93HGfb0dPOPr3b5BYU8einW1mwNYlnr+nMyze6KFkAeHlDWF8Y+jw8+D28cBju+Ni6yzx2CXxxN0ztYK0quP1zyM246BSN6vvy8UP9uaxNME9+vo1vth9zTex11PHUNAZsfBw/b6HBhHmaLNQlq7CGISLewAHgGiAJ2AyMN8bsLVbmOuAJ4DpgAPAvY8wAEWkJtDTGbBWRhsAW4GZjzF4ReQXIMsa84Wiwla1hAGTlFTLs9ZW0DQlg/qRBHj8xXmZuAQ/PiWFTwin+dFN37hvUzt0h/aqowJqqZP931s/ZY1bHedfroNd4q+ZRrNkqJ7+QBz/czKbDp3h9bC9u69vajcHXUjYb29+4nh7ZGzh961xCe13r7oiUG7iyhtEfiDPGxBtj8oG5wJgSZcYAHxnLBiBYRFoaY5KNMVsBjDGZwD4grKpBV0ZgPR9+O7IzW46c5msP/0v2ZFYe49/bwJYjp/nnnb1rVrIAKxl0GAbXvQ7P7IGHl0Pf+627zz+7A97qBj+8CMk7wBgC/Hz44P7+DOoYwnPzdzAvJtHNb6D2iZv3Ir1z1rEu4jlNFqrKHEkYYUDx/8lJXPxLv8IyItIOuAzYWGzzZHsT1mwRqbZ5PO6IDqd3eDB/XbyPMzn51XWZanXszDnumLGeuNQs3rsvmjG9XZp3K08EWveF66bCs/utie3aDILN78N/r4T/XgHbPqW+FDBrQj8u79SUF+bv5PNNR90dea2RteULOu2fwQ/1rmXQuItakpWqNEcSRmltOCXbscotIyKBwALgaWPMWfvm6UBHoDeQDLxZ6sVFJopIjIjEpKWlORDuxby9hL/d0pMz5wr4+5L9l3QOd4pLzWTs9HWkZeXx8UMDGN7Vw4aj+vhZzVJ3fgzPHYDr37I6z795DP7ZA/+1U3nv1jYM7RzKi1/t4pMNR9wdsec7vg2/xU+w2daFtve+i69PFYdaK4VjCSMJCC/2ujVw3NEyIuKLlSw+NcZ8db6AMSbFGFNkjLEB72E1fV3EGDPTGBNtjIkODQ11INzSRbYK4uHL2/NFTCKrDlxa4nGH7YlnuH3GegqKDPMeGUQ/T79Lun5j6PcQPLoO7vvG6kBf9Rr+/4lidvBsJrQ/yx++3s2cdQnujtRzZaZw7uNxpNoasm3gO3RrrTdJKudwJGFsBiJEpL2I+AHjgEUlyiwC7rOPlhoIZBhjksXqYZ4F7DPGvFX8AHuH+Hm3ALsv+V046JlrOtO5eSDPfbmD9Ky86r5cla2ITWX8zA0E+vswf9IgurUMcndIziNi9Xfc9QVM3gJ978d73yL+lDyJBU2m8/G3S5m19rC7o/Q8eVkUfDYezp3mtaCXeODafu6OSNUiFSYMY0whMBlYitVpPc8Ys0dEJonI+ZXilwDxQBxWbeEx+/YhwL3AVaUMn50qIrtEZCcwHHjGae+qDP6+3vzzzsvIyCngdwt2YbPV3HtQ5m9J4uE5MXQIbcCCRwfTrmktnkSxaSero/zZPTDsRfoUbufHer8jeOkTzF26xt3ReY6CXMzn4/FK3sZvi55g8t231L6VJ5Vb1eob98oye+1h/rx4L8+N7MzkqyKcEJnzGGOYvuoQU3+IZUinEGbc07furSWRnU7R2rco2jATbEUcaH0rPcb91Wkz6dZKRQUw7z6IXcIz+Y/S96ZHuWdgW3dHpWoIl964V9s8MKQdN/duxZvLDvDzvhR3h3NBXmERz8/fydQfYrmpVys+uL9/3UsWAA1C8L72Vbye2s7GxjfQJekrCt6OglVToSDX3dHVPLYi+PpRiF3Cy4UPkBt5O3cPaOPuqFQtVCcThojw91uj6N4qiCc+38b2xDPuDonUzFzGz9zA/C1JPH11BP+8szd+PnXyn+cCn+AwBj3xIf/o9AlLCy6DFa/C9EEQ95O7Q6s5jIHvnoVdX/KO1z2sCBrDa7dGefwNqqpmqrO/ker7eTP7/n40DazHAx9s4mBKptti2ZxwijH/+YV9yZm8e3cfnr66s66Dbefj7cWLd49mRc+p3J3/IiezC+GT26zmlwzPvhGzyoyBH/8AWz7ky4A7mV54I+/dF02jgDpYK1UuUWcTBkCzhv58/FB/vL28uHPmBnYfu3jeo+pUZDP8++eD3Pnf9fj5eDH/0UFc17NlxQfWMd5ewutjo4gYeCODM/7CopAHMQeWwn/6wS//ttrv66LVr8P6/7Cm8S08f+om3rqjF11a6IqGqvrU6YQB0DakAfMeGYi/jxfj39vAL3EnXXLdo+k53P3+Bt5adoCberVi8ROX071VI5dc2xN5eQkv3xjJC9dH8eSxq5kcPJ2C8MHWUrMzh8OJXe4O0XWMgZ9egRWvsrPpddyXfBvPjezCqB76x4aqXnU+YQB0CA3ky0cH0yLIn/tmb+L9NfFU1+ixwiIbM1cfYuQ/V7H72FleHxvF23f2rpud25UkIjx8RQf+c9dlLEuuz7Wpj5N63SzISoGZw2Dla7W/tlFUAF8/BmvfZl/YWG5Ouot7Brbn8eGd3B2ZqgPq5LDasmTlFfLbedtZuieFyzs15R9jowgLrvqa1mANl122N4V//LCfQ2nZXN2tOX+5uTstGznn/HXNpsOnmPhxDDabYdqt7bjiwFTYPR9aRMHN06FFD3eH6Hz52TBvAsQtY1unx7hl9xBGdW/JtLv74K19XqocuoBSNTHG8Nmmo7z63T5sxjDxig48fGWHyq2RXUxhkY2le1J4b0082xPP0CG0AVNGdeWayOY6kqWKEk/lMPHjLew/cZZnru7M5Jb78PruWTh3Boa+AJc/49AqgB4h+yR8ejskb2ddtz9w11brOzTtrj51fjSdqpgmjGqWeCqHqUtj+XbHcQLr+TC2b2tuuSyMqNaNKvxFb4xh97GzLN51nMU7kjl25hxtQwJ45MqO3BHdGh+9+9ZpzuUX8eJXO/l6+3FGdG3G1OtbE7LqD1Zto2UvGPOu59c2TifAx7dizh7j24hXeXJbS0ZGNuc/miyUgzRhuMjuYxnMWnuYxTuPU1BkaB5Uj75tG9OleRCtgv0J8PPBZgynsvNJzcxl7/Gz7EjK4FR2Pj5ewuBOTblnQBtGdGuuzQbVxBjDnHUJ/G3JfoLq+zB1bBRX2TZa9yd4em0jKQbm3oUpzOPdVq/y+t7G3NonjNdujdJkoRymCcPFzuTks2xvCmsOnmTr0dMknT53URkvgU7NAukdHky/dk24JrI5wQF+boi2btp/4ixPz93O/hOZ3DWgDb8f1ozAn6bAnq+s2sbN06F5d3eH6RibDdb9C5b/laLAljzn9wcWJjXkyRERPHN1hDZnqkrRhOFmuQVFpJ7N41xBESIQ0sCP4AA/rUW4WV5hEW/9eICZa+Jp1rAeL93Qneu8NyLf/dZaX3zY72DIM+Dt4+5Qy5aZAgsnQvxKTra9jrFJ40jJr8ffb+3JzZfV8IWzVI2kCUOpcmw9epo/LNzN3uSzXBHRlJeuakZEzJ9gz0Jo2RtueMtai6OmOfgTLHwEk5/Nty2f5MmDUXQIDWTGPX3p3FxvylOXRhOGUhUoLLLxyYYjvLnsAFl5hdzcO4zftztA6Or/g+w0uOweGPEyBF76wlzOCzYflv8Z1r1DZlAEj+Y9wS9nm3L/4HY8f20XAvxqcI1I1XiaMJRy0JmcfGasiueDXw5TaDPc1j2IF/y/oeme2eDbAIa/CP0edk+nuDEQ+z3mp1eQk7H8GHADT5waS9vmTfjrzT3p397DV1hUNYImDKUq6URGLu+viefzTUfJzi/iltZZTOFDmp9cB6HdYPQ/oMNQ1wV0dANm2ctI4gaOeYfx0rlxbK8/iGeu6cy4fuE6/Fo5jSYMpS5RxrkC5m46ymebjnIkPZub6m3jZb9PCCk4QWGbIfgMmAhdr6+2GodJ3U/2kpcITFjKSYJ5s+A2fgkczUNDI7gjOpz6ft7Vcl1Vd2nCUKqKjDFsOnyK+VuSWL33KDflL2GCz4+0lpNk+jXjZJe7CLniNwQ1a13l6ySnZ3B82w947/2KqNPLyDH1mFl0I3Ed7uXGfhFcE9lcl1NV1UYThlJOVFhkY8uR0yzfl0zu3h+4KvMbhnrtJN94s9J7MLsbX01R8x4ENWtH48B6NAnwIzjAFx9vLwTwEuFcQREZ5wrIOFdAelYeyWknaXx8NV1Or2SIbQsN5RxZpj7rG43mTPRTDL2sK80a+rv7ras6wKUJQ0RGAf8CvIH3jTGvldgv9v3XATnA/caYreUdKyJNgC+AdkACcIcx5nR5cWjCUK6SlVdI7J5teG+ZTZfkRdS3ZQFw2gSyz9aGvaYte21tSTKhBEkOwZJFMFkXHltJOoO99+BPAVnejTje4iq8I2+idd9R1PMPcPO7U3WNyxKGiHgDB4BrgCRgMzDeGLO3WJnrgCewEsYA4F/GmAHlHSsiU4FTxpjXRGQK0NgY87vyYtGEodwiPwdO7MKc2EnBsR2YE7vxPbkXr6K8i4oa8cJWLxgCQ/HuOBy63QjhA2v2jYKq1nNWwnDkW9wfiDPGxNsvPBcYA+wtVmYM8JGxss8GEQkWkZZYtYeyjh0DDLMfPwdYCZSbMJRyC78AaDMAaTOACxO9FBXCqUNw9hj4B0P9xhDQBPFriLeX9kWo2smRhBEGJBZ7nYRVi6ioTFgFxzY3xiQDGGOSRaRZaRcXkYnARPvLPBHZ7UDM7tYUcM3SfVWjcTqPJ8QIGqezeUqcXZxxEkcSRmmTI5VsxyqrjCPHlssYMxOYCSAiMc6oVlU3jdO5PCFOT4gRNE5n86Q4nXEeR+rOSUB4sdetgeMOlinv2BR7sxX2x1THw1ZKKeVqjiSMzUCEiLQXET9gHLCoRJlFwH1iGQhk2Jubyjt2ETDB/nwC8E0V34tSSqlqVGGTlDGmUEQmA0uxhsbONsbsEZFJ9v0zgCVYI6TisIbVPlDesfZTvwbME5GHgKPA7Q7EO7Myb86NNE7n8oQ4PSFG0DidrU7F6VE37imllHIfHf+nlFLKIZowlFJKOaTGJQwRuV1E9oiITUTKHK4mIqNEJFZE4ux3ip/f3kRElonIQftj42qKs8LriEgXEdle7OesiDxt3/eKiBwrtu86d8RoL5cgIrvsccRU9nhXxCki4SKyQkT22b8fTxXbV62fZVnftWL7RUT+bd+/U0T6OHqsi+O82x7fThFZJyK9iu0r9TvghhiHiUhGsX/Llxw91sVxPl8sxt0iUiTWdEcu+yzt15otIqlSxv1pTv9uGmNq1A/QDesmk5VAdBllvIFDQAfAD9gBRNr3TQWm2J9PAf5RTXFW6jr2mE8Abe2vXwGeq+bP0qEYsebyalrV91idcQItgT725w2xppw5/29ebZ9led+1YmWuA77Huu9oILDR0WNdHOdgrCl4AEafj7O874AbYhwGLL6UY10ZZ4nyNwLLXflZFrvWlUAfYHcZ+5363axxNQxjzD5jTGwFxS5MV2KMyQfOTzmC/XGO/fkc4ObqibTS1xkBHDLGHKmmeEpT1c+ixnyWxphkY5/Q0hiTCezDmkmgupX3XTvvwtQ4xpgNwPmpcRw51mVxGmPWmV8n+NyAdV+UK1Xl86hRn2UJ44HPqymWchljVgOnyini1O9mjUsYDiprKhIoMeUIUOqUI05Q2euM4+Iv1WR7NXF2NTX3OBqjAX4UkS1iTcVS2eNdFScAItIOuAzYWGxzdX2W5X3XKirjyLHOUtlrPYT1l+d5ZX0HnMnRGAeJyA4R+V5EulfyWGdw+FoiEgCMAhYU2+yKz9JRTv1uumUKTRH5CWhRyq7/M8Y4cgNflacccUR5cVbyPH7ATcCLxTZPB/6CFfdfgDeBB90U4xBjzHGx5vNaJiL77X+5OI0TP8tArP+cTxtjzto3O+WzLOuSpWxz2dQ4leDwtURkOFbCuLzY5mr/DjgY41asZtsse1/U10CEg8c6S2WudSPwizGm+F/5rvgsHeXU76ZbEoYx5uoqnqLCKUeMNaFhlaYcKS9OEanMdUYDW40xKcXOfeG5iLwHLHZXjMaY4/bHVBFZiFVdXU0N+yxFxBcrWXxqjPmq2Lmd8lmWoSpT4/g5cKyzOBInIhIFvA+MNsakn99eznfApTEW+yMAY8wSEXlXRJo6cqwr4yzmopYDF32WjnLqd9NTm6RqwpQjlbnORW2c9l+M590CVMcsvBXGKCINRKTh+efAyGKx1JjPUkQEmAXsM8a8VWJfdX6W1TU1jrNVeC0RaQN8BdxrjDlQbHt53wFXx9jC/m+NiPTH+h2V7sixrozTHl8jYCjFvq8u/Cwd5dzvpit68ivzg/UfPgnIA1KA4qaFzAAAAPBJREFUpf/fzt2jIAwEARR+tjaCVnoUj+ApBBsLr2NnZ6EnsPMGFv5gJdaWHsBCix0hSMRtEhXeB8EkJmSYDBnYLIn9PWBVOG5AmilzJg1lPfd3gDVwit92RXGWXqckziap4Fsv58+BA7CPG9X9RoykWRK7WI6/mkvS8Mk98rWNZVBHLstqDRgD41hvANP4/0Bhdt+7Oq0oj5/inAHXQv42n2rgCzFOIoYd6cV8/xdzGdtDYPlyXm25jOstgAtwIz03R1XWpp8GkSRl+dchKUlSzWwYkqQsNgxJUhYbhiQpiw1DkpTFhiFJymLDkCRleQBohdyW6C5DzAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(w, sol_maxent[0].A_opt, label='maxent')\n", "plt.plot(w_pade, sol_pade.A_opt, label='pade')\n", "plt.xlim(-5., 10.)\n", "plt.ylim(0., 2.)\n", "plt.legend()\n", "plt.show()\n", "\n", "plt.plot(w, sol_maxent[0].A_opt, label='maxent')\n", "plt.plot(w_pade, sol_pade.A_opt, label='pade')\n", "plt.xlim(-1., 1.)\n", "plt.ylim(0., 0.2)\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just out of curiosity, also look at the QMC error (logplot!) at the points that were used for the Pade interpolation." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf70lEQVR4nO3de3RddZ338ff3XJI09ybplSRNW1qglHILEZAiiA5yKajjKOggjo6secTLPMzzzAVGF8446swzupiljsqIglfEEaVFRgQKtAg2baGU3tu0aZMmbdJcTm4nOZf9e/5IqKUXSNsk++Tsz2utrjabnHM+/ZF88uvv/Pbe5pxDRESyX8jvACIiMjFU+CIiAaHCFxEJCBW+iEhAqPBFRAIi4neAN1NRUeFqamr8jiEiMqmsX7/+kHNu2tHHM7rwa2pqWLdund8xREQmFTPbe7zjWtIREQkIFb6ISECo8EVEAkKFLyISEBlZ+Ga2zMzuj8VifkcREckaGVn4zrkVzrk7SkpK/I4iIpI1MrLwRWiqh9VfG/5dRMZERu/Dl0mkqR4aV0PNUqiqO3w4lfZIO0duJEwi5dG94wVSDauIzL+S6YuuPPx5zV0DdPQliISN3NZ1zH3iw1g6gQvnEP7YCqiqw/McT289SFvvEGUFOVxQVcrs0in0D6XIzwljZjjnSHuOSDhEMu0RCRlrG7voiSd559nTCYXs8Gsm0x5tvUPMLsnDcxAODT8+nkwTDhnRUIhQyGjpjhMOGTOK8477V0+lPTY0dbOkspScyMTNoZxzmNlbHpvoDJK5VPhyQp7nSO9bQ2jvC6xxi/jfL+awdME07nr3QsIhY0trD+UFOaT3rmHxM7cR8pIkifDjhd9gRWcl/Yk0+7vimMEFVaWk9q7hofCXiJIiue4/+KeZ/4/4jItZs6eD3e39h1/3U+HHuCuSIGweqVSCn/z8J2xfkM/W1h7WNnYd/rxwyDh3djEbm2PMqyigvDCHhvZ++odSXFBVyiv7ugFIpD0A5lYUUJAbpqkzzlkzi+joG6KhvZ+8aIjBpMfZM4voHUyxvzsOgBlML8rlYM8Q0bBx2fwKmrsGwMG7Fs3AOcfG5hj7u+M0d8W5eM5U3ja3jHDIqCrLZ0NTN+m0430XnUFdTRkN7X3sbOsj7Tnae4dYMKOQlOd4estB9nUOkBMO0TOYpCgvSsiMbQd6yM8Jc6gvwbmzi7n5gjOIho3d7f0snFHEN1buZEpOmA/VVnGob4idbX08veUgSypLufVt1ew40MvBnkFuu2wO6xq7iCfTnDOriFg8yUAizX+vb+acWcVct3gmrbFBrj5rOjmREC81HKI1NkhuJEx+Tpidbb30DqaYEg1TXphDPOGxZk8H+7vjtMYGqSjI4ZxZxeRGQ3ziinnMKsljWlEu0XCItOdo6Y5TOXUKPYMpNjZ30947RHlhLnU1ZUzJCdM3lKK1O85QyqOhvY/GQwNMK8pl6YIKqsrySXuODU1dvLCzg+IpEUrzo3ge3Hj+LDa39DC7ZAozS/LoGUyyu72fZNpjan6UZ7e1c6BnkCWVJVxxZgXxZBozY11jJ72DKf70okoiYSMaDtEai9PVn+TsmUWYwd6OAcwgmR7+f9UzmKQwN0J1WT6tsUEALqwuJRIyNrf00NGfwPMcedEwC2cUYmbc9cgGth/o5ZxZxfzjDecwsySP/JwI2w/08vTWg+SEQ/z5pXNoaO+juWv4a3JuRQHJtMcj65q45ZJqwqGx/WFqmXwDlNraWqczbSdOR98QK7e1cSA2yP7uOG1bVvOt1L3DBU2E/5v/z/w2Vk3Ke+PXzHBB/4KIeaQJ8bXkn/H7WR9ldukUZhTn0TuY4pWmLu4p+h+ubrmfEB5pwvwg58PcN7SMi+ZM5aqF05hTnk8y7Zja+QqXPP8xzEuSsgj3FP0Lv41VU5Ab4bPXLOCdZ0+nvXeIR1/ez4sNh1i6oIJtB3pJpj2qpuYTCYdYv7eTS+eVkxsJMbeikNxIiMdebSFkMLM4j983HCIaDnHrJdW0xOLk54RZv7eL/JwItTVTcQ7iiTQt3XHmTStgf/cga/Z0sGB6IYmUx/M72gmZcX5VKUV5ES6unsp3nm9gKOXhgLTnKM4bnk/1DqUoyo3QM5g67rgX5UaYO62AZHr4Md0DSYZSaZZUljKYTFMyJcrzO9pp6x16w+OmFeUSMjjYM3y8ojCXy+eXs3JbG31DKcIhIzcSYiCRPu7rzinPZ1/nAG9VAZGQUZgXYWAoffiH5+IziplbUciskjz2dvSzt2OAtt4hOvsTAFSVTeG8M0r4/a4OYvEks0vyaO8bIpn+44vlRkLUzS1jQ1M3vccZm5DBubNL2Nc5QCyePOa/T4mGiSfTh8ewd+jY58iJhEikvOP+vaJhI5l2nD2ziIb2PpJpR2FuhLxomEN9Q8d9zNGvX5ofPfwD4EjFeREGUx43nDeL320+QH8ijRmcX1nKxuZuXv8WygmHDo8pwOXzy0mlHfWNnXzvo7W8a9GMt8xxPGa23jlXe8xxFX6wbNofYyiV5iLbSWzrsxwsr+UHe6fT0N7Hpv09h7+BSvOjfKHkt7y36weE8PAI466+m72L/orntreTSHtcUFVKTzxJZd8mznnqI1g6CeEc4rf+iinzLzv2xZvq4aGbIJ2AcA7cvvwNyz/HfO5xlogyRUt3nEjYmF70x2WegUQKwxhKpTnQM8jC6UUMptJ8c+UuugYSXFQ9lUWzi4mGQ0zNz2FdYycOeNc5M95yKSiZ9mjqHCCeTFM5NZ+X93axpLKEgtwIrbFBZpXkkRcNA9DWO8iB2CALZxTRP5Ti28818PYFFZwzs5j93QOUFeSSTHucOa2QLa09tHTHmV06hRcbDuG54VI6e2YR8WSa3sEUcysKyImEcM7RN5TC86AkP3pMxt7BJI9taCHtOR59uZm23iGuOLOCs2YW8YfdncytyOcdC6czuzSP/d1xntnaxqod7SyYUcj1580iJxxi3rRC5pTncyA2yE/r97G5JUZ1WT6Xz69g6YIK+hNp4okU+zoH+NUrLSw9s4L2viE6+hKUFUQ5a2YxuZEQbb1DnDOriLNmFLFxf4z6PZ2UThnOXFNRQDhkPLnpALnREGv3dLFgRiEXVJWyaX+MvqE0F1aXkhcNEwkZ04tyKZ4SpXcwRWNHPxWFuaQ9jz/s7uRgz/C/jOZPLyAcCtE7mOTVpm42Nsf4i7fP5bL55TR1DvDUloO09w3x9JaDXDa/nM9es4Btrb385rUW6uaWMa+ikNU72/lZfRMd/UN8+X3n8f6LKk/561OFH2DOOZ7acpBfb9jPE68d4CLbwU9yv0zUDc/cP+59Hld1CXMrCrjt0hrmTy8gNxIen4LO8CIX8VPac3jOEQ2f3ntBJyp8reFno5FSHaq8nPXpBXxn1W5W7WinND/KnVfP553tL5GzK0XYPEKkeeCqQfKvOc6MvKpuuORHU9BVdaMr8NF+nkgAhUNGmPF7EzwjC9/MlgHLzjzzTL+jTD5N9aQfXAbpBJ6L8O+Ju9kaOYd/vvlcbq2rJhIOQdNN0Pg9SCcIhXPIX3jViZ9PBS2SNTKy8J1zK4AVtbW1n/Q7y2TS0h3nleWPcG0qQcQ8cizFv9X2MOOGayjKO2LN9WRm7iKSNTKy8GX0th/o5burGnhlXzf7Oge40Cr5k9wozqUIh3M4s+46yDv2DTbN3EWCR4U/STnn+PbzDXztdzvIi4R4x1nTuHHJLD50yVVE+y7X7F1EjqHCn6S++j/b+O6q3dywZBZfunkxUwty/vgfp2r2LiLHUuFPJk31dG5eyfebz+C7u8r46GVz+OJN5+rUdhEZFRX+JNHf8CLRH7+XYi/JnUSoqvsOf7ZMZS8io6erZU4CB3sG+dnPf0rISxIxj7xQmg9Na3zDhcBERN6KCj/DdfUnuO2BNawcXIhFcsDCWDhn+A1ZEZGToCWdDNbRN8RfPLiWxo4B7v2LDxPOuVS7b0TklKnwM5Bzjnt+vYmH6/cRMuM7f34xl8+vACpU9CJyyjKy8IN+aYWvP7WDn67Zx6111dx++RzOnlnsdyQRyQIZuYYf1HvaOue47+kdfGPlLj5YW8mX37dYZS8iYyYjCz+ofrG+mfue3skHLq7kK+9foi2XIjKmMnJJJ3Ca6jm48Ske/UMhl89/G//6p0vG/NZmIiIqfL811eM9uIzydIIHwxEGlj6qsheRcaElHZ/tWfdbvFSCCB65lqasvd7vSCKSpVT4PmruGuAfN0wlZRGcTqgSkXGmJR2fOOf42//eyKtuAbEP/pIZnWt1QpWIjCsVvk9WbGzlxYYOvvTexcw4dw5wpd+RRCTLaUnHB4PJNF99Yivnzi7m1rpqv+OISECo8H3wX6t20xIb5PM3LtKOHBGZMCr8CXawZ5D/fK6B6xbP5NJ55X7HEZEAUeFPIOccX3hsE2nP8Q/XneN3HBEJGBX+BPrF+mae3HyQ/3PtQqrL8/2OIyIBk5GFb2bLzOz+WCzmd5Qxs69jgC8u38yl88r4yyvm+R1HRAIoIws/266W6XmOv/nFBkIh42sfvEC3JhQRX2Rk4Web5a+2sLaxi8/fsIgzSqf4HUdEAkqFP87iiTT/+tttLD6jmA9cXOl3HBEJMJ1pO56a6nnlmV8zq2caf/ehj2opR0R8pcIfL031uIeWUZdM8HBelJzo2wHtuxcR/2hJZ5x4e1YPX/bYPKKkoHG135FEJOBU+OPkyf4zSbgIHrrssYhkBi3pjAPPc3z5tSJeKP8qX7qgG+bqssci4j8V/jj4w+4OmjrjXPKh92AXnuF3HBERQEs64+Ln65ooyovwnsUz/Y4iInKYCn+MbTvQw4pXW/hgbRV50bDfcUREDlPhjyHnHF9cvoXiKVE+884z/Y4jIvIGKvwx9OTmA7y0u4O/efdCSvNz/I4jIvIGKvwxMphM86XfbOXsmUW6baGIZCQV/hh5ZF0TzV1xPn/jIiJhDauIZB410xjwPMcPft/I+VWlXD5fl08Qkcykwh8DK7e1sedQP395xVzMdIE0EclMKvwx8MALe5hdksd12ncvIhksIwt/Mt3icHNLjJd2d3D75TVauxeRjJaRDTWZbnH4wOo95OeEuUU7c0Qkw2Vk4U8WDe19/HrDfj5cV03JlKjfcURE3pQK/zTc9/RO8qJh/uqq+X5HERF5Syr8U3QgNshvNrZw22VzqCjM9TuOiMhbUuGfol+9sh/PwS2XaO1eRCYHFf4pcM6xpf5pvlTxO+bGN/sdR0RkVHQDlFOwa/1K/q3/H8m1FDz0c7h9ue5oJSIZTzP8U9C4/kmipAjhQTqhG5SLyKSgwj9JQ6k0PzpQhReKgoVBNygXkUlCSzon6dlt7ayKz+O1ZT/iYm/TcNlrOUdEJgEV/klasbGF8oIczr/0Gghf63ccEZFR05LOSRhIpFi5tY3rzpup6+aIyKSj1joJz2xtI55Mc+OS2X5HERE5aSr8k/D4xhamF+VySU2Z31FERE6aCn+UegeTPLu9nevPm0U4pJuciMjko8Ifpae3HiSR8lh2/iy/o4iInBIV/ig9/mors0ryuLBqqt9RREROiQp/FGIDSVbtbOeG82YR0nKOiExSKvxReHLLAZJpx43na3eOiExeKvxR+M3GVqrKpnB+ZebfclFE5ERU+G8hNpDk97sOccN5szHTco6ITF4q/Lfw3I42Up7j2nNn+B1FROS0qPDfwsptbcPXzqks9TuKiMhpUeG/iVTa47nt7Vx99nTtzhGRSU+F/ybW7e0iFk9yzdnT/Y4iInLaVPhv4vGNLUyJhrly4TS/o4iInDYV/gkk0x6/2djKuxbNoCBXtw0QkclPhX8CL+w6RNdAkpt0spWIZAkV/gn8ZmMrRXkRrlxY4XcUEZExMaGFb2YFZrbezG6cyNc9Wam0xzNbD3LN2dPJjYT9jiMiMiZGVfhm9n0zazOzTUcdf4+ZbTezXWb296N4qr8DHjmVoBNpbWMXXQNJrj13pt9RRETGzGjfjXwQ+Cbww9cPmFkY+BbwbqAZWGtmy4Ew8JWjHv9xYAmwBcg7vcjj78nNB8iJhLQ7R0SyyqgK3zm3ysxqjjpcB+xyzu0GMLOHgZudc18BjlmyMbOrgQJgERA3syecc95xPu8O4A6A6urq0f9NxtCqHe1cPr9cu3NEJKucTqOdATQd8XEz8LYTfbJz7h4AM/sYcOh4ZT/yefcD9wPU1ta608h3SlpjcXYf6ufDb/Pnh42IyHg5ncI/3rUG3rKgnXMPnsZrjruXGjoAuGx+uc9JRETG1uns0mkGqo74uBJoOb04/tv/2vPcNeVxzklu8zuKiMiYOp3CXwssMLO5ZpYD3AIsH5tY/nD71vDJPX/Nne5hQj+6GZrq/Y4kIjJmRrst82fAS8BZZtZsZp9wzqWATwNPAluBR5xzm8cilJktM7P7Y7HYWDzdqMW2PkvEpQjjQToBjasn9PVFRMbTaHfp3HqC408AT4xpouHnXQGsqK2t/eRYP/ebWcsiriBC2NJYOAdqlk7ky4uIjCvtOzzCis4qfha5lwfeMQhzl0JVnd+RRETGjK6lM8I5R++uF3lf2R5MZS8iWUiFP6J54/P8Z+pebmh/AB66SW/YikjWUeGPaN/0DFFShPSGrYhkqYwsfD926Tw1sICURXAWBr1hKyJZKCML3zm3wjl3R0lJyYS8nrd3DXn7X+LxWZ/F3nkP3L5ca/giknW0S6epHn54E3e6BBzMgetXqOxFJCtl5Ax/QjWuhnSCiHmEXVJr9yKStVT4NUtJ2fDbtTrZSkSymQq/qo47I/fyRMXHtXYvIlkt8Gv4rbE4T/XO4bJ3XAdVc/2OIyIybjJyhj+R2zJ3v/wsnwo/xtK83eP+WiIifjLnJvymUqNWW1vr1q1bN34v0FRP8vs3Yl6ScDQX05KOiGQBM1vvnKs9+nhGzvAnTONqQi5JxDxMZ9eKSJYLdOF71VeQcBHShHR2rYhkvUAXflPhYj6SuJtNCz+jHToikvUCvUtnc0sPL7uF2JVvh8pSv+OIiIyrQM/wu7a/wJ2RxzgrudXvKCIi4y4jC39CtmU21fOBzXdyV+QX5P7kfbr+vYhkvYws/Am5WmbjasIuqRuWi0hgZGThT4TO6XUkXQQPXf9eRIIhsG/avspZfCNxN/dd2kf1Rddqh46IZL3AFv6WkR06pdf+CeRF/Y4jIjLuAruks7klRnVZPsUqexEJiMAWPk313JX3uHbniEhgBLLwBxpe4mvxL3BT5/fhoZtU+iISCIEs/NjWlQzf40pbMkUkODKy8Mf7xKvteeeTJIIzbckUkeDIyMIf7xOv1qUXcFvqHtJX3a2LpolIYARyW2ZDex+dUy8g8o6r/I4iIjJhMnKGP94a2vuYN63A7xgiIhMqcIWf3ruGazt/ypV5e/yOIiIyoYK1pNNUj/3oJj4XSsD2X0NTjdbvRSQwgjXDb1wNqQQR8wi7pLZjikigBKvwa5bihaKkXAjCUW3HFJFACVbhV9Vxf819fDt0C3b7Ci3niEigBGsNH3huYC5uRg2fUdmLSMBk5Ax/PM+0bWjvY15F4Zg/r4hIpsvIwh+vM227+hN09CeYP1178EUkeDKy8MfLwS2r+FT4MS60nX5HERGZcMFZw2+q58z/+Qh3RRKEnn8MavSmrYgES3Bm+I2rCXnDe/AtrT34IhI8wSn8mqWkbPgq+KZLIotIAAVnSaeqjnuK/4VL2MwHP/BhLeeISOAEZ4YPPN07hw01n1DZi0ggBabweweTdA0kqZqa73cUERFfBKbwmzrjAFSVTfE5iYiIP4JT+F0DAFSXaYYvIsEUnMLvHC58LemISFAFpvBpquevc1dQ2vGK30lERHwRjG2ZTfXctvOzRCyJ/fDXcPty7dQRkcDJyBn+mF8ts3E1EZckjAfphM6yFZFAysjCH/OrZdYsJUGENCHQWbYiElAZWfhjLT7jYj4ydDf1c/+XlnNEJLACsYbfGovzsltI63l/BlWVfscREfFFIGb4B2KDAMwq0UlXIhJcgSj81sOFn+dzEhER/wSk8IcvqzBThS8iARaQwh+krCCHvGjY7ygiIr4JROEfiA0ys1izexEJtkDs0inueIXrw1uhKVdbMkUksLJ/ht9Uz1d67+G93Q/CQzdBU73fiUREfJH1hZ/avYqIS+myCiISeFlf+LHpbyNJBI+wLqsgIoGW9YXfWryEjyTuZtfiz+myCiISaFn/pu2hviFedgvpveQyqCrzO46IiG+yfoZ/qC8BQEVhrs9JRET8lfWF39E3BEC5Cl9EAi7rC/9Q3xB50RAFOTrLVkSCLesLv6MvQXlBLmbmdxQREV9lfeG39w1RUaTlHBGRjCz8sbyn7aG+BNMKc8YglYjI5JaRhT+W97Tt6BuivEAzfBGRjCz8seJ5jo7+BBVFmuGLiGR14cfiSc5327m67ce6aJqIBF5Wn2nbt+tFfpLzZXIbUrD3e7q0gogEWlbP8L09q4mSIqQrZYqIZHfhNxVfRJIIznSlTBGRrF7S2Zm7iK8n7ubH70qSv/AqLeeISKBldeF39CV41c4i7+rrIKQzbUUk2LJ6SedQ3xBlBTmEVPYiItlf+OUF2oMvIgJZX/gJpuk6OiIiQNYX/pBufCIiMiKrC3/40sha0hERgSwu/P6hFPFkWpdGFhEZkbWF3zFyL1vN8EVEhmVt4beP3MtWM3wRkWFZW/jJvX/gU+HHqO7f5HcUEZGMkJ1n2jbVU/vcx6iNJAg98RhMW6HLKohI4GXnDL9xNSEvQcQ8LJ3UVTJFRMjWwq9ZSjoUJeVCukqmiMiI7Cz8qjoemPcffCd0C6abnoiIANla+MDm8Nn8suBDKnsRkRFZW/g98STFedn5nrSIyKnI3sIfTFI8Jep3DBGRjJG9hR9X4YuIHClrCz8WT1Gcp8IXEXld1hb+8JKO1vBFRF6XlYU/mEyTSHma4YuIHCErC79nMAmgNXwRkSNMWOGb2VVmttrMvmNmV43na/XEUwDalikicoRRFb6Zfd/M2sxs01HH32Nm281sl5n9/Vs8jQP6gDyg+dTijs7rM/wSzfBFRA4b7RT4QeCbwA9fP2BmYeBbwLsZLvC1ZrYcCANfOerxHwdWO+eeN7MZwNeBj5xe9BOLxbWkIyJytFEVvnNulZnVHHW4DtjlnNsNYGYPAzc7574C3PgmT9cFnPCuJGZ2B3AHQHV19WjiHaPn9cLXm7YiIoedzhr+GUDTER83jxw7LjN7v5l9F/gRw/9aOC7n3P3OuVrnXO20adNOKVjP4MgavrZliogcdjqNaMc55k70yc65R4FHT+P1Rk0zfBGRY53ODL8ZqDri40qg5fTijI2i9pf5THQ5eQfW+x1FRCRjnE7hrwUWmNlcM8sBbgGWj02s09BUzy1bP83nwo/AQzdBU73fiUREMsJot2X+DHgJOMvMms3sE865FPBp4ElgK/CIc27zWIQys2Vmdn8sFjv5BzeuJuKSRPAgndDtDUVERox2l86tJzj+BPDEmCYaft4VwIra2tpPnvSDa5YSiuQOl71ubygiclj2bWOpqoPblw/P7GuW6o5XIiIjsq/wYbjkVfQiIm+QlRdPExGRY6nwRUQCIiML/7R26YiIyHFlZOE751Y45+4oKSnxO4qISNbIyMIXEZGxp8IXEQkIc+6E1zvznZm1A3tP8eEVwKExjDMWMjETZGauTMwEynUyMjETBCPXHOfcMZcbzujCPx1mts45V+t3jiNlYibIzFyZmAmU62RkYiYIdi4t6YiIBIQKX0QkILK58O/3O8BxZGImyMxcmZgJlOtkZGImCHCurF3DFxGRN8rmGb6IiBxBhS8iEhBZV/hm9h4z225mu8zs7/3O8zozazSz18xsg5mt8zHH982szcw2HXGszMyeMrOdI79PzYBM95rZ/pHx2mBm109wpioze9bMtprZZjP73Mhxv8fqRLn8Hq88M6s3s1dHcn1x5Lhv4/UmmXwdqyPyhc3sFTN7fOTjcR+rrFrDN7MwsAN4N8M3WV8L3Oqc2+JrMIYLH6h1zvl6woeZXQn0AT90zi0eOfZvQKdz7qsjPySnOuf+zudM9wJ9zrl/n6gcR2WaBcxyzr1sZkXAeuC9wMfwd6xOlOuD+DteBhQ45/rMLAq8AHwOeD8+jdebZHoPPo7VEfnuAmqBYufcjRPxfZhtM/w6YJdzbrdzLgE8DNzsc6aM4pxbBXQedfhm4KGRPz/EcIH4nclXzrlW59zLI3/uZfi+zWfg/1idKJev3LC+kQ+jI78cPo7Xm2TynZlVAjcA3zvi8LiPVbYV/hlA0xEfN5MB3wwjHPA7M1tvZnf4HeYoM5xzrTBcKMB0n/O87tNmtnFkyWdCl06OZGY1wIXAGjJorI7KBT6P18gSxQagDXjKOef7eJ0gE/j/tXUf8LeAd8SxcR+rbCt8O86xjPiJDrzdOXcRcB1w58gyhpzYt4H5wAVAK/A1P0KYWSHwS+CvnXM9fmQ4nuPk8n28nHNp59wFQCVQZ2aLJzrDKDP5OlZmdiPQ5pxbP5GvC9lX+M1A1REfVwItPmV5A+dcy8jvbcCvGF5+yhQHR9aGX18jbvM5D865gyPfrB7wX/gwXiPrvr8EfuKce3TksO9jdbxcmTBer3POdQPPMbxW7vt4HZ0pA8bq7cBNI+/rPQy808x+zASMVbYV/lpggZnNNbMc4BZguc+ZMLOCkTfYMLMC4E+ATW/+qAm1HLh95M+3A4/5mAU4/AX/uvcxweM18obfA8BW59zXj/hPvo7ViXJlwHhNM7PSkT9PAd4FbMPH8TpRJr/Hyjn3D865SudcDcMdtdI59+dMxFg557LqF3A9wzt1GoB7/M4zkmke8OrIr81+5gJ+xvA/Y5MM/4voE0A58Aywc+T3sgzI9CPgNWDjyDfCrAnOdAXDy4EbgQ0jv67PgLE6US6/x2sJ8MrI628CvjBy3LfxepNMvo7VURmvAh6fqLHKqm2ZIiJyYtm2pCMiIiegwhcRCQgVvohIQKjwRUQCQoUvIhIQKnwRkYBQ4YuIBMT/B9JmaMxuxmO+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.semilogy(wn, err_cont)\n", "plt.semilogy(iw_pade, err_cont[indices_pade], linestyle='None', marker='.')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }